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Dimensional Reduction

o N

Siegel introduced DRED as a variation of DREG to maintain
the equality of Bose-Fermi degrees of freedom
characteristic of supersymmetry.

= (2°0)
o= (0
W, = (Wi(2?), Wy(z?))

A (Dirac) fermion represents 4 degrees of freedom as long

as we define the Dirac matrix trace to satisfy Tr1 = 4.

It is useful to define hatted quantities with u, v - - - indices

whose only non-vanishing components are in the
LD—dimensionaI subspace; in particular, §,, = (gi;,0). J



Metric tensors

-

So we define

guvzzzguv'+'§uu

where

guugﬂy
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e=4—D
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Gauge transformations

-

The dimensionally reduced form of the gauge
transformations:

5Wia — 9;\? —I_gfabCWibAC
SWE = gf*WlA
5¢a _ ig(Ra)aﬁwﬁAa
show that W? transform as scalars, called e-scalars.
Consequently the interactions

g1 RYWE  and  g? fo fUCW WS WEWS,

are both gauge invariant by themselves.
Moreover, a mass for the e-scalars is itself gauge invariant.

.
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Evanescent Couplings and Masses

o N

We have three classes of theories which behave differently
under renormalisation using DRED.

#® Supersymmetric Theories:
The e-scalar interactions remain in step with the
corresponding gauge interactions, and its mass
remains zero.

o Softly-broken supersymmetric theories:
Radiative corrections generate a mass for the e-scalar.

# Un-supersymmetric theories:
Again a mass for the e-scalar, and both its Yukawa
coupling and the quartic interaction renormalise
differently from the gauge coupling. New quartic group
L theory structures are generated. J
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e-scalar quartic couplings

A basis for tensors K%<? in SU(N) is given by

K = 5ab 5cd K4 — dabe dcde K7 = dabe fcde

Ky = §ac 5bd Ks = Joce dbde Ky = Joce fbde

Kq = 5ad 5bc Kg = dade dbde Ko = dade fbce.

So for e-scalars a natural basis is
Hi = 3Ki, Hy=

(Ko + K3)
(K5 + Kg),

DO— DNO|—

reducible in SU(3) since then Hs + Hy = 3(Hy + H»).
This makes DRED ponderous in non-susy theories.
LNevertheIess, DRED and DREG are equivalent. J
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DRED ambiguities
-

Given d < 4, one can define /Y77 as follows:

5 10 AV B APy A0
P = GHe Gl 5P 570 € g

where €,3+5 IS the usual 4-dimensional tensor. Then it is
easy to show that

éMVPUéa575::zgﬂagVﬁgp7§06__ §M5§Va§P7§U5_+...
and hence by consideration of

vpo AUV PO 2030 ~
AHVPT v po pofiy Eafis

that
d+1)(d— 4)(d? — 3d + 6)e*vP7 = (
L ( )( )( ) J
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V5
B

From

[v,7°} =0 wehave {4,,7°}=0. (7)

and hence that

(d — 4)Tr [y°5#4"475°] = 0. (8)
For d > 4, however, Eq. (7) does not hold and so Eqg. (8) no
longer follows. In that case you can impose

[%,75} =0, for 4<o<d

giving an unambiguous DREG derivation of the anomaly.

o |
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Living with ¢*°7° and ~°

o N

Hvpo afiyo ghe gVB g” g05 _ guﬁ g"%g" g° 04 . (10)

To avoid ambiguities we must avoid assuming relations like

and
{77} =0,
For example, in two dimensional o models the relation

e, e = (1 + ce)gh? (12)

can be used without ambiguity; the dependence on the
c-parameter can be absorbed into redefinitions of the
renormalised metric and torsion. Stockinger has formalised
this by distinguishing “normal” d = 4 space, from a quasi
 d=4space, Q4S, in which Egs. (10), (12) are not true. |
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The supersymmetry Ward identity

o N

The N =1 theory

1 1 — 1

IS Invariant under supersymmetry transformations except
for one term:

SLg = gfabcg,y,u)\axb%u)\c’

which is zero in strictly four dimensions. However, an
Insertion of §Lg In @ Feynman graph of arbitrary complexity
depends on a quantity A given by

i A = Tr(Ay"Byu) + Te(Ay")Ta(Bry,) — (—1)*Te(Av" By,
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Here A, B are strings of yv-matrices. In DREG, A is non-zero
even at one loop; in strict d = 4 it is zero, but not in Q4S,
since for example if

A=Aty and B = y,% 0 s (16)

then
A = 48511 642 . .. 512

which is not zero in Q4S. For instance

TrA = 48d(d — 1)(d — 2)(d — 3)(d — 4)

There is no problem of principle; the contribution of dLg
ensures that the Ward identity remains satisfied. J
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The NSVZ S-function

B 3 1 Q—2r Ty [,YNSVZC(R)} ]
1672 | 1 - 20(G)g2(1672) "

g
6;\75VZ

54 and v calculated using DRED begin to deviate from the
NSVZ results at three loops. However, there is an analytic
redefinition of g, ¢ — ¢'(¢,Y’) which connects them. It is
non-trivial that the redefinition exists; in the abelian case for
example, the redefinition consists of a single term, but it
affects four distinct terms (with different tensor structure) in
the g-functions. Exploiting the fact that vV = 2 theories are
finite beyond one loop it was possible to determine 3./**"

for N = 1 at three and four loops by (comparatively) simple
calculations. Subsequently some of these results were
confirmed by the Karlsruhe group. J
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The NSVZ<DRED connection
- -

5§S)DRED —r 1y {3X1 +6X3+ X4 — 696Qtr[C’(R)2]}

BWINSVZ — =10 19X 44X, — 4g5Qtr[C(R)?]}

The coupling constant redefinition linking the two schemes
IS uniquely determined up to an overall constant:

09 = —(167%)*Lr 1 g°tr [PC(R)]
and generates just the right shift in j3,:

| (167°)°68, =1 g (—X1 — 2X3 — X4 + 2¢°Qtr[C(R)?)) .
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Physical quantities and the schemes

-

A QCD example: in DRED:

DRED 2
mfole _ m?REDOL) [1 4+ a3 (:LL) <5 — 3In %)]

whereas in DREG:

mpee = mP G ()

from which we can deduce that

8%
PREC )~ mPRED () 1 2

o |



The DRED SQCD S-function
B -

167’(‘255(]1) — (Nf — 3Nc) 937
(1672)281% = ([4NC _ Nl} Ny — 6N§) P

3
(167)°8% = (|
+ [ IN2 - 2, - 9] Nj — 21N3)47,
(1672)18{") = (—SLMN]?; + {132]\[3 — 66N — & — %} N

+ [44 + 3B 0 (424 12@(3))N§] N?

L — 102N§> q°. J
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Higher Order Invariants

-

Note that the higher order group theory invariants of the T
form (Tr FeFPFeF? +...)2 and (TrR*R°RRY + - - -)? found in
the 4 loop QCD calculation (using DREG or DRED) do not
appear here; and indeed they cancel in those calculations
when the fermion representation R“ is replaced by the

adjoint, F*.

It is possible that 8.’/ for SQCD is free of such structures

to all orders (manifestly so for 3)'°"# in the absence of

chiral superfields, of course).

These new terms in QCD cannot be removed by analytic
coupling constant redefinitions; it follows that the
DRED<«+»DREG+«+NSVZ linkage does not extend to the QCD
B-function ansatz of Ryttov and Sannino.

o |
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DRED and soft breaking

o N

In DRED the e-scalar mass mixes with the physical masses
of genuine particles under renormalisation:

1

B2 Ci(g,Y)mi + Dy 4 - - -,

where the + - - - denotes terms involving gaugino masses
and A-parameters.

By an analytic redefinition of the form

mz2|DRED' = m?‘DRED — Ci(g)m2 4.

L we can make 3,2 is independent of 7n?. J
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The Soft S-functions
-

Using DRED’, we can prove that:

ik i ik)l (¢x-7k)I
5’;3 _ 71( Rik) oT yik)

i 1 i)l (¢ )
gy = %(@bj) —191* 1)

B 20 (@)
g

where
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The soft scalar mass S-function

o N

9, ~ 0 9,
) = * 1 oIMPP— + [V — X—
B [200+ | |9892+( aY+cc>+ ag]v
where Yo = (Ylmn)*, and }N/ijk _ Yl(jk(mQ)z')l
Here

5 _ g r~r[m?C(R)] - MM*C(G)
NSVZ™ 1672 1—20(G)g?(16m2)~1

XNsy 7 Is known through three loops.

o |



The RS anzatz for QCD
B |

RS g° Q — 5ymN;T(R)

T 1 - 20(G)g2(1672) 7" (14 22U

where ~,, Is the fermion mass anomalous dimension. In
the special case of a single fermion adjoint multiplet
(corresponding to V = 1 susy) they equate this to

sz = 32D 0 ac(aygaont) ™)

to deduce that then

B 1 = 629G 1 ac(G)ga6e%) ) N

1672
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But in this case the ~,, is the g-function for the gaugino
mass; a soft breaking term. Consequently it is given in the
NSVZ scheme by the formula

5M=2O(@),
g

l.e.

NSVZ _ _692C(G) 1
" 1672 (1 —2C(Q)g?(1672) )2

So: | can calculate in the DRED and DREG schemes, and
relate the results to each other and to the NSVZ scheme;
but | don’t know how to calculate in the RS scheme. J
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Summary

n supersymmetric theories use DRED.
n softly-broken supersymmetric theories use DRED'.
n non-supersymmetric theories use DREG.

-

|
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