DRED

Tim Jones

Wernigerode, 2012

References

- W. Siegel, Phys. Lett. B84 (1979) 193
- D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Nucl. Phys. B167 (1980) 479
- W. Siegel, Phys. Lett. B94 (1980) 37
- L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, Phys. Lett. B105 (1981) 272
- I. Jack, D.R.T. Jones and K.L. Roberts, Z. Phys. C62 (1994) 161; Z. Phys. C63 (1994) 151
- I. Jack et al, Phys. Rev. D 50 (1994) 5481
- D. Stöckinger, JHEP 0503 (2005) 076
- R. Harlander et al JHEP 0609 (2006) 053; JHEP 0612 (2006) 024; Eur. Phys. J. C 63 (2009) 383

Dimensional Reduction

Siegel introduced DRED as a variation of DREG to maintain the equality of Bose-Fermi degrees of freedom characteristic of supersymmetry.

$$
\begin{aligned}
x^{\mu} & \equiv\left(x^{i}, 0\right) \\
p^{\mu} & \equiv\left(p^{i}, 0\right) \\
W_{\mu} & \equiv\left(W_{i}\left(x^{j}\right), W_{\sigma}\left(x^{j}\right)\right)
\end{aligned}
$$

A (Dirac) fermion represents 4 degrees of freedom as long as we define the Dirac matrix trace to satisfy $\operatorname{Tr} 1=4$.
It is useful to define hatted quantities with $\mu, \nu \ldots$ indices whose only non-vanishing components are in the D-dimensional subspace; in particular, $\hat{g}_{\mu \nu}=\left(g_{i j}, 0\right)$.

Metric tensors

So we define

$$
g_{\mu \nu}=\hat{g}_{\mu \nu}+\tilde{g}_{\mu \nu}
$$

where

$$
\begin{aligned}
g_{\mu \nu} g^{\mu \nu} & =4 \\
g_{\mu \nu} \hat{g}_{\rho}^{\nu} & =\hat{g}_{\nu \rho} \\
\hat{g}_{\mu \nu} \hat{g}^{\mu \nu} & =D \\
g_{\mu \nu} \tilde{g}_{\rho}^{\nu} & =\tilde{g}_{\nu \rho} \\
\tilde{g}_{\mu \nu} \tilde{g}^{\mu \nu} & =\epsilon=4-D \\
\hat{g}_{\mu \nu} \tilde{g}^{\nu}{ }_{\rho} & =0
\end{aligned}
$$

Gauge transformations

The dimensionally reduced form of the gauge transformations:

$$
\begin{aligned}
\delta W_{i}^{a} & =\partial_{i} \Lambda^{a}+g f^{a b c} W_{i}^{b} \Lambda^{c} \\
\delta W_{\sigma}^{a} & =g f^{a b c} W_{\sigma}^{b} \Lambda^{c} \\
\delta \psi^{\alpha} & =i g\left(R^{a}\right)^{\alpha \beta} \psi^{\beta} \Lambda^{a}
\end{aligned}
$$

show that W_{σ}^{a} transform as scalars, called ϵ-scalars.
Consequently the interactions

$$
g \bar{\psi} \gamma_{\sigma} R^{a} \psi W_{\sigma}^{a} \quad \text { and } \quad g^{2} f^{a b c} f^{a d e} W_{\sigma}^{b} W_{\sigma^{\prime}}^{c} W_{\sigma}^{d} W_{\sigma^{\prime}}^{e}
$$

are both gauge invariant by themselves.
Moreover, a mass for the ϵ-scalars is itself gauge invariant.

Evanescent Couplings and Masses

We have three classes of theories which behave differently under renormalisation using DRED.

- Supersymmetric Theories:

The ϵ-scalar interactions remain in step with the corresponding gauge interactions, and its mass remains zero.

- Softly-broken supersymmetric theories: Radiative corrections generate a mass for the ϵ-scalar.
- Un-supersymmetric theories:

Again a mass for the ϵ-scalar, and both its Yukawa coupling and the quartic interaction renormalise differently from the gauge coupling. New quartic group theory structures are generated.

ϵ-scalar quartic couplings

A basis for tensors $K^{\text {abcd }}$ in $S U(N)$ is given by

$$
\begin{array}{llll}
K_{1} & =\delta^{a b} \delta^{c d} & K_{4}=d^{a b e} d^{c d e} & K_{7}=d^{a b e} f^{c d e} \\
K_{2}=\delta^{a c} \delta^{b d} & K_{5}=d^{a c e} d^{b d e} & K_{8}=d^{a c e} f^{b d e} \\
K_{3}=\delta^{a d} \delta^{b c} & K_{6}=d^{a d e} d^{b d e} & K_{9}=d^{a d e} f^{b c e} .
\end{array}
$$

So for ϵ-Scalars a natural basis is

$$
\begin{array}{ll}
H_{1}=\frac{1}{2} K_{1}, & H_{2}=\frac{1}{2}\left(K_{2}+K_{3}\right) \\
H_{3}=\frac{1}{2} K_{4}, & H_{4}=\frac{1}{2}\left(K_{5}+K_{6}\right),
\end{array}
$$

reducible in $S U(3)$ since then $H_{3}+H_{4}=\frac{1}{3}\left(H_{1}+H_{2}\right)$.
This makes DRED ponderous in non-susy theories.
Nevertheless, DRED and DREG are equivalent.

DRED ambiguities

Given $d<4$, one can define $\hat{\epsilon}^{\mu \nu \rho \sigma}$ as follows:

$$
\hat{\epsilon}^{\mu \nu \rho \sigma}=\hat{g}^{\mu \alpha} \hat{g}^{\nu \beta} \hat{g}^{\rho \gamma} \hat{g}^{\sigma \delta} \epsilon_{\alpha \beta \gamma \delta}
$$

where $\epsilon_{\alpha \beta \gamma \delta}$ is the usual 4-dimensional tensor. Then it is easy to show that

$$
\hat{\epsilon}^{\mu \nu \rho \sigma} \hat{\epsilon}^{\alpha \beta \gamma \delta}=\hat{g}^{\mu \alpha} \hat{g}^{\nu \beta} \hat{g}^{\rho \gamma} \hat{g}^{\sigma \delta}-\hat{g}^{\mu \beta} \hat{g}^{\nu \alpha} \hat{g}^{\rho \gamma} \hat{g}^{\sigma \delta}+\cdots
$$

and hence by consideration of

$$
A^{\mu \nu \rho \sigma}=\hat{\epsilon}^{\mu \nu \rho \sigma} \hat{\epsilon}^{\alpha \beta \gamma \delta} \hat{\epsilon}_{\alpha \beta \gamma \delta}
$$

that

$$
(d+1)(d-4)\left(d^{2}-3 d+6\right) \hat{\epsilon}^{\mu \nu \rho \sigma}=0
$$

$$
\gamma_{5}
$$

From

$$
\begin{equation*}
\left\{\gamma_{\mu}, \gamma^{5}\right\}=0 \quad \text { we have } \quad\left\{\hat{\gamma}_{\mu}, \gamma^{5}\right\}=0 \tag{7}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
(d-4) \operatorname{Tr}\left[\gamma^{5} \hat{\gamma}^{\mu} \hat{\gamma}^{\nu} \hat{\gamma}^{\rho} \hat{\gamma}^{\sigma}\right]=0 . \tag{8}
\end{equation*}
$$

For $d>4$, however, Eq. (7) does not hold and so Eq. (8) no longer follows. In that case you can impose

$$
\left[\gamma_{\sigma}, \gamma^{5}\right]=0, \quad \text { for } \quad 4<\sigma<d
$$

giving an unambiguous DREG derivation of the anomaly.

Living with $\epsilon^{\alpha \beta \gamma \delta}$ and γ^{5}

To avoid ambiguities we must avoid assuming relations like

$$
\begin{equation*}
\epsilon^{\mu \nu \rho \sigma} \epsilon^{\alpha \beta \gamma \delta}=g^{\mu \alpha} g^{\nu \beta} g^{\rho \gamma} g^{\sigma \delta}-g^{\mu \beta} g^{\nu \alpha} g^{\rho \gamma} g^{\sigma \delta}+\cdots \tag{10}
\end{equation*}
$$

and

$$
\left\{\gamma_{\mu}, \gamma^{5}\right\}=0
$$

For example, in two dimensional σ models the relation

$$
\begin{equation*}
\hat{\epsilon}^{\mu}{ }_{\nu} \hat{\epsilon}^{\nu \rho}=(1+c \epsilon) \hat{g}^{\mu \rho} \tag{12}
\end{equation*}
$$

can be used without ambiguity; the dependence on the c-parameter can be absorbed into redefinitions of the renormalised metric and torsion. Stöckinger has formalised this by distinguishing "normal" $d=4$ space, from a quasi $d=4$ space, $Q 4 S$, in which Eqs. (10), (12) are not true.

The supersymmetry Ward identity

The $N=1$ theory

$$
L_{S}=-\frac{1}{4} G^{\mu \nu} G_{\mu \nu}+\frac{i}{2} \bar{\lambda}^{a} \gamma^{\mu} D_{\mu}^{a b} \lambda^{b}+\frac{1}{2} D^{2} .
$$

is invariant under supersymmetry transformations except for one term:

$$
\delta L_{S}=\frac{g}{2} f^{a b c} \bar{\epsilon} \gamma^{\mu} \lambda^{a} \bar{\lambda}^{b} \gamma_{\mu} \lambda^{c}
$$

which is zero in strictly four dimensions. However, an insertion of δL_{S} in a Feynman graph of arbitrary complexity depends on a quantity Δ given by

$$
\Delta=\operatorname{Tr}\left(A \gamma^{\mu} B \gamma_{\mu}\right)+\operatorname{Tr}\left(A \gamma^{\mu}\right) \operatorname{Tr}\left(B \gamma_{\mu}\right)-(-1)^{k} \operatorname{Tr}\left(A \gamma^{\mu} B^{R} \gamma_{\mu}\right)
$$

Here A, B are strings of γ-matrices. In DREG, Δ is non-zero even at one loop; in strict $d=4$ it is zero, but not in Q4S, since for example if

$$
\begin{equation*}
A=\gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{5}} \quad \text { and } \quad B=\gamma_{\nu_{1}} \gamma_{\nu_{2}} \cdots \gamma_{\nu_{5}} \tag{16}
\end{equation*}
$$

then

$$
\Delta=48 \delta_{\nu_{1}}^{\left[\mu_{1}\right.} \delta_{\nu_{2}}^{\mu_{2}} \cdots \delta_{\nu_{5}}^{\left.\mu_{5}\right]}
$$

which is not zero in Q4S. For instance

$$
\operatorname{Tr} \Delta=48 d(d-1)(d-2)(d-3)(d-4)
$$

There is no problem of principle; the contribution of δL_{S} ensures that the Ward identity remains satisfied.

The NSVZ β-function

$$
\beta_{g}^{N S V Z}=\frac{g^{3}}{16 \pi^{2}}\left[\frac{Q-2 r^{-1} \operatorname{Tr}\left[\gamma^{N S V Z} C(R)\right]}{1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}}\right] .
$$

β_{g} and γ calculated using DRED begin to deviate from the NSVZ results at three loops. However, there is an analytic redefinition of $g, g \rightarrow g^{\prime}(g, Y)$ which connects them. It is non-trivial that the redefinition exists; in the abelian case for example, the redefinition consists of a single term, but it affects four distinct terms (with different tensor structure) in the β-functions. Exploiting the fact that $N=2$ theories are finite beyond one loop it was possible to determine $\beta_{g}^{D R E D}$ for $N=1$ at three and four loops by (comparatively) simple calculations. Subsequently some of these results were confirmed by the Karlsruhe group.

The NSVZ \leftrightarrow DRED connection

$$
\begin{gathered}
\beta_{g}^{(3) D R E D}=r^{-1} g\left\{3 X_{1}+6 X_{3}+X_{4}-6 g^{6} Q \operatorname{tr}\left[C(R)^{2}\right]\right\} \\
\beta_{g}^{(3) N S V Z}=r^{-1} g\left\{2 X_{1}+4 X_{3}-4 g^{6} Q \operatorname{tr}\left[C(R)^{2}\right]\right\}
\end{gathered}
$$

The coupling constant redefinition linking the two schemes is uniquely determined up to an overall constant:

$$
\delta g=-\left(16 \pi^{2}\right)^{-2} \frac{1}{2} r^{-1} g^{3} \operatorname{tr}[P C(R)]
$$

and generates just the right shift in β_{g} :

$$
\left(16 \pi^{2}\right)^{3} \delta \beta_{g}=r^{-1} g\left(-X_{1}-2 X_{3}-X_{4}+2 g^{6} Q \operatorname{tr}\left[C(R)^{2}\right]\right)
$$

Physical quantities and the schemes

A QCD example: in DRED:

$$
m_{t}^{\text {pole }}=m_{t}^{D R E D}(\mu)\left[1+\frac{\alpha_{3}^{D R E D}(\mu)}{3 \pi}\left(5-3 \ln \frac{m_{t}^{2}}{\mu^{2}}\right)\right]
$$

whereas in DREG:

$$
m_{t}^{\text {pole }}=m_{t}^{D R E G}(\mu)\left[1+\frac{\alpha_{3}^{D R E G}(\mu)}{3 \pi}\left(4-3 \ln \frac{m_{t}^{2}}{\mu^{2}}\right)\right]
$$

from which we can deduce that

$$
m_{t}^{D R E G}(\mu)=m_{t}^{D R E D}(\mu)\left[1+\frac{\alpha_{3}}{3 \pi}\right]
$$

The DRED SQCD β-function

$$
\begin{aligned}
16 \pi^{2} \beta_{g}^{(1)} & =\left(N_{f}-3 N_{c}\right) g^{3}, \\
\left(16 \pi^{2}\right)^{2} \beta_{g}^{(2)} & =\left(\left[4 N_{c}-\frac{2}{N_{c}}\right] N_{f}-6 N_{c}^{2}\right) g^{5}, \\
\left(16 \pi^{2}\right)^{3} \beta_{g}^{(3)} & =\left(\left[\frac{3}{N_{c}}-4 N_{c}\right] N_{f}^{2}\right. \\
& \left.+\left[21 N_{c}^{2}-\frac{2}{N_{c}^{2}}-9\right] N_{f}-21 N_{c}^{3}\right) g^{7}, \\
\left(16 \pi^{2}\right)^{4} \beta_{g}^{(4)} & =\left(-\frac{2}{3 N_{c}} N_{f}^{3}+\left[132 N_{c}^{3}-66 N_{c}-\frac{8}{N_{c}}-\frac{4}{N_{c}^{3}}\right] N_{f}\right. \\
& +\left[44+\frac{36 \zeta(3)-20}{3 N_{c}^{2}}-(42+12 \zeta(3)) N_{c}^{2}\right] N_{f}^{2} \\
& \left.-102 N_{c}^{4}\right) g^{9} .
\end{aligned}
$$

Higher Order Invariants

Note that the higher order group theory invariants of the form $\left(\operatorname{Tr} F^{a} F^{b} F^{c} F^{d}+\cdots\right)^{2}$ and $\left(\operatorname{Tr} R^{a} R^{b} R^{c} R^{d}+\cdots\right)^{2}$ found in the 4 loop QCD calculation (using DREG or DRED) do not appear here; and indeed they cancel in those calculations when the fermion representation R^{a} is replaced by the adjoint, F^{a}.
It is possible that $\beta_{g}^{D R E D}$ for SQCD is free of such structures to all orders (manifestly so for $\beta_{g}^{N S V Z}$ in the absence of chiral superfields, of course).
These new terms in QCD cannot be removed by analytic coupling constant redefinitions; it follows that the DRED \leftrightarrow DREG $\leftrightarrow N S V Z$ linkage does not extend to the QCD β-function ansatz of Ryttov and Sannino.

DRED and soft breaking

In DRED the ϵ-scalar mass mixes with the physical masses of genuine particles under renormalisation:

$$
\begin{aligned}
\beta_{\tilde{m}^{2}} & =A(g, Y) \tilde{m}^{2}+\sum_{i} B_{i}(g, Y) m_{i}^{2}+\cdots \\
\beta_{m_{i}^{2}} & =C_{i}(g, Y) m_{i}^{2}+D_{i} \tilde{m}^{2}+\cdots
\end{aligned}
$$

where the $+\cdots$ denotes terms involving gaugino masses and A-parameters.
By an analytic redefinition of the form

$$
\left.m_{i}^{2}\right|_{\mathrm{DRED}}{ }^{\prime}=\left.m_{i}^{2}\right|_{\mathrm{DRED}}-C_{i}(g) \tilde{m}^{2}+\cdots
$$

we can make $\beta_{m_{i}^{2}}$ is independent of \tilde{m}^{2}.

The Soft β-functions

Using DRED', we can prove that:

$$
\begin{aligned}
\beta_{h}^{i j k} & =\gamma_{l}^{(i} h^{j k) l}-2 \Gamma_{l}^{(i} Y^{j k) l} \\
\beta_{b}^{i j} & =\gamma_{l}^{(i} b^{j) l}-2 \Gamma_{l}^{(i} \mu^{j) l} \\
\beta_{M} & =2 \mathcal{O}\left(\frac{\beta_{g}}{g}\right)
\end{aligned}
$$

where

$$
\mathcal{O}=\left(M g^{2} \frac{\partial}{\partial g^{2}}-h \frac{\partial}{\partial Y}\right), \quad(\Gamma)^{i}{ }_{j}=\mathcal{O} \gamma^{i}{ }_{j}
$$

The soft scalar mass β-function

$$
\beta_{m^{2}}=\left[2 \mathcal{O} \mathcal{O}^{*}+2|M|^{2} g^{2} \frac{\partial}{\partial g^{2}}+\left(\tilde{Y} \frac{\partial}{\partial Y}+c c\right)+X \frac{\partial}{\partial g}\right] \gamma
$$

where $Y_{l m n}=\left(Y^{l m n}\right)^{*}$, and $\tilde{Y}^{i j k}=Y^{l(j k}\left(m^{2}\right)^{i)}{ }_{l}$
Here

$$
X_{\mathrm{NSVZ}}=-2 \frac{g^{3}}{16 \pi^{2}} \frac{r^{-1} \operatorname{tr}\left[m^{2} C(R)\right]-M M^{*} C(G)}{1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}}
$$

X_{NSVZ} is known through three loops.

The RS anzatz for QCD

$$
\beta_{g}^{R S}=\frac{g^{3}}{16 \pi^{2}}\left[\frac{Q-\frac{2}{3} \gamma_{m} N_{f} T(R)}{1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}\left(1+2 \frac{N_{f} T(R)-C(G)}{Q}\right)}\right]
$$

where γ_{m} is the fermion mass anomalous dimension. In the special case of a single fermion adjoint multiplet (corresponding to $N=1$ susy) they equate this to

$$
\beta_{g}^{N S V Z}=-3 \frac{g^{3} C(G)}{16 \pi^{2}} /\left(1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}\right)
$$

to deduce that then

$$
\gamma_{m}=-6 \frac{g^{2} C(G)}{16 \pi^{2}} /\left(1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}\right)
$$

But in this case the γ_{m} is the β-function for the gaugino mass; a soft breaking term. Consequently it is given in the NSVZ scheme by the formula

$$
\beta_{M}=2 \mathcal{O}\left(\frac{\beta_{g}}{g}\right)
$$

i.e.

$$
\gamma_{m}^{N S V Z}=-6 \frac{g^{2} C(G)}{16 \pi^{2}} \frac{1}{\left(1-2 C(G) g^{2}\left(16 \pi^{2}\right)^{-1}\right)^{2}}
$$

So: I can calculate in the DRED and DREG schemes, and relate the results to each other and to the NSVZ scheme; but I don't know how to calculate in the RS scheme.

Summary

- In supersymmetric theories use DRED.
- In softly-broken supersymmetric theories use DRED'.
- In non-supersymmetric theories use DREG.

