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Dimensional Reduction

Siegel introduced DRED as a variation of DREG to maintain
the equality of Bose-Fermi degrees of freedom
characteristic of supersymmetry.

� � � � � �� � �

� � � � � �� � �

� � 	 � � � 
 � � � � � 
 � �

A (Dirac) fermion represents 4 degrees of freedom as long
as we define the Dirac matrix trace to satisfy


�� � � �.
It is useful to define hatted quantities with �� ��� � � indices
whose only non-vanishing components are in the�

-dimensional subspace; in particular,

��� �� � � � � 
 � � �

.
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Metric tensors

So we define � � � � ��� �� � �� ��

where

� �� � �� � �

� �� ��� ��� � ��� ��� � �� � � �� � �

� �� �� � � � �� ���� �� �� �� � ! � � " �

��� �� �� ��� � �
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Gauge transformations

The dimensionally reduced form of the gauge
transformations:

# $� � % � & $ � � ' $ (*) (� & )

# $� � � ' $ (*) (� & )#+ , � - � �. $ � , / + / & $
show that

$� transform as scalars, called !-scalars.
Consequently the interactions

� + 0 � . $ + $� and � 1 ' $ ( ) ' $ 2*3 (� ) � 4 2� 3 � 4

are both gauge invariant by themselves.
Moreover, a mass for the !-scalars is itself gauge invariant.
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Evanescent Couplings and Masses

We have three classes of theories which behave differently
under renormalisation using DRED.

Supersymmetric Theories:
The !-scalar interactions remain in step with the
corresponding gauge interactions, and its mass
remains zero.

Softly-broken supersymmetric theories:
Radiative corrections generate a mass for the !-scalar.

Un-supersymmetric theories:
Again a mass for the !-scalar, and both its Yukawa
coupling and the quartic interaction renormalise
differently from the gauge coupling. New quartic group
theory structures are generated.
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5-scalar quartic couplings

A basis for tensors

6 $ ( ) 2

in

78 �9 �

is given by

6;: � # $ ( # ) 2 6=< � > $ ( 3 >) 2*3 6=? � > $ ( 3 ' ) 2*3

6 1 � # $ ) # ( 2 6;@ � > $ ) 3 > ( 2*3 6;A � > $ ) 3 ' ( 2*3

6;B � # $ 2 # ( ) 6;C � > $ 2*3 > ( 2*3 6;D � > $ 2*3 ' ( ) 3E

So for !-scalars a natural basis is

F: � : 1 6;: � F 1 � : 1 � 6 1 � 6;B �

FB � : 1 6< � F< � : 1 � 6;@ � 6C � �

reducible in

7 8 �G �
since then

F;B � F< � :B � F: � F 1 � .
This makes DRED ponderous in non-susy theories.
Nevertheless, DRED and DREG are equivalent.
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DRED ambiguities

Given

>IH �

, one can define

�! ��� �

as follows:

�! ��� � � ��� � , ��� � / ���� J ��� � K ! , / J K
where ! , / J K is the usual

�

-dimensional tensor. Then it is
easy to show that

�! ��� � �! , / J K � ��� � , ��� � / � �� J � � � K " ��� � / � � � , � �� J � � � K � � � �

and hence by consideration of

L � �� � � �! ��� � �! , / J K �! , / J K

that � > � � � � > " � � � > 1 " G > � M � �! ��� � � �
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N

From O 0 �� 0 @P � � we have

O � 0 �� 0 @ P � �E (7)

and hence that

� > " � � 
� Q 0 @ � 0 � � 0 � � 0� � 0 � R � �E (8)

For

>IS �

, however, Eq. (7) does not hold and so Eq. (8) no
longer follows. In that case you can impose

Q 0 �� 0 @ R � �� for

� H T H >

giving an unambiguous DREG derivation of the anomaly.
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Living with 5 U V W

and

N
To avoid ambiguities we must avoid assuming relations like

! � �� � ! , / J K � � � , � � / �� J � � K " � � / � � , �� J � � K � � � � (10)

and O 0 �� 0 @ P � �E
For example, in two dimensional T models the relation

�! � � �! �� � � � �YX ! � ��� �� (12)

can be used without ambiguity; the dependence on theX -parameter can be absorbed into redefinitions of the
renormalised metric and torsion. Stöckinger has formalised
this by distinguishing “normal”

> � � space, from a quasi> � � space,

Z � 7
, in which Eqs. (10), (12) are not true.
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The supersymmetry Ward identity

The

9 � � theory

[]\ � " � � ^ �� ^ �� � - _ ` $ 0 � � $ (� ` ( � �_ � 1E
is invariant under supersymmetry transformations except
for one term:

# []\ � �_ ' $ ( ) ! 0 � ` $ ` ( 0 � ` ) �

which is zero in strictly four dimensions. However, an
insertion of

# [a\ in a Feynman graph of arbitrary complexity
depends on a quantity

b
given by

b � 
�� � L 0 �c 0 � � � 
�� � L 0 � � 
�� �c 0 � � " � " � � d 
� � L 0 �c e 0 � �
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Here

L� c are strings of 0-matrices. In DREG,

b

is non-zero
even at one loop; in strict

> � � it is zero, but not in Q4S,
since for example if

L � 0 �f 0 �g � � � 0 �h and

c � 0� f 0� g � � � 0� h (16)

then b � �i # j �f� f # �g� g � � � # �h k� h
which is not zero in Q4S. For instance


�� b � �i > � > " � � � > " _ � � > " G � � > " � �

There is no problem of principle; the contribution of

# [a\

ensures that the Ward identity remains satisfied.
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The NSVZ -function

l m\ nop � � B� M�q 1
Z " _sr t : 
� Q 0 m\ no u �. � R

� " _ u � ^ � � 1 � � M q 1 � t : E

l p and 0 calculated using DRED begin to deviate from the
NSVZ results at three loops. However, there is an analytic
redefinition of � , � v � w � � � x �

which connects them. It is
non-trivial that the redefinition exists; in the abelian case for
example, the redefinition consists of a single term, but it
affects four distinct terms (with different tensor structure) in
the

l

-functions. Exploiting the fact that

9 � _ theories are
finite beyond one loop it was possible to determine

l y ez yp

for

9 � � at three and four loops by (comparatively) simple
calculations. Subsequently some of these results were
confirmed by the Karlsruhe group.
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The NSVZ DRED connection

l { B | y ez yp � r t : � O G } : � M } B � } < " M � C Z~ � � u � . � 1��P

l { B | m\ nop � r t : � O _ } : � � } B " � � C Z~ � � u �. � 1��P

The coupling constant redefinition linking the two schemes
is uniquely determined up to an overall constant:

# � � " � � M q 1 � t 1 : 1 r t : � B ~ � �� u �. � �

and generates just the right shift in

l p:

� � M�q 1 � B # l p � r t : � 	 " } : " _ } B " } < � _ � C Z~ � � u �. � 1I� �
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Physical quantities and the schemes

A QCD example: in DRED:

� � � ���� � � y ez y� � � � � � � y ez yB � � �G q � " G ��� � 1 �� 1

whereas in DREG:

� � � ���� � � y ez �� � � � � � � y ez �B � � �G q � " G ��� � 1 �� 1

from which we can deduce that

� y ez �� � � � � � y ez y� � � � � � � � BG q
�
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The DRED SQCD -function

� M�q 1 l { : |p � 	9 � " G 9 ) � � B �

� � M q 1 � 1 l { 1 |p � � �9 ) " 1 m��
� 9 � " M9 1) � @ �

� � M q 1 � B l { B |p � 	 � B m�� " �9 ) � 9 1�

� � _ � 9 1) " 1 mg � " � � 9 � " _ � 9 B) � � ? �

� � M q 1 � < l { < |p � " 1B m�� 9 B � � � � G _ 9 B) " M M9 ) " A m�� " < m ��
� 9 �

� � � � � B C � { B | t 1�B mg � " 	 � _ � � _ � �G � � 9 1) � 9 1�

" � � _ 9 <) � DE
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Higher Order Invariants

Note that the higher order group theory invariants of the
form

� 
� � $ � ( � ) � 2 � � � � � 1

and

� 
�� . $ . (�. ) . 2 � � � � � 1
found in

the 4 loop QCD calculation (using DREG or DRED) do not
appear here; and indeed they cancel in those calculations
when the fermion representation

. $

is replaced by the
adjoint,

� $

.
It is possible that

l y ez yp for SQCD is free of such structures
to all orders (manifestly so for

l m\ nop in the absence of
chiral superfields, of course).
These new terms in QCD cannot be removed by analytic
coupling constant redefinitions; it follows that the
DRED �DREG �NSVZ linkage does not extend to the QCDl

-function ansatz of Ryttov and Sannino.
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DRED and soft breaking

In DRED the !-scalar mass mixes with the physical masses
of genuine particles under renormalisation:

l�� � g � L � � � x � � � 1 �
�

c � � � � x � � 1� � � � � �

l� g¢¡ � u � � � � x � � 1� � � � � � 1 � � � � �
where the � � � � denotes terms involving gaugino masses
and

L

-parameters.
By an analytic redefinition of the form

� 1� £¤ ¥¦ ¤ 4 � � 1� £¤ ¥¦ ¤ " u � � � � � � 1 � � � �

we can make

l� g§¡ is independent of

� � 1.
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The Soft -functions

Using DRED

w

, we can prove that:

l � 
 d¨ � 0 { �© ª 
 d | © " _ « { � © x 
 d | ©

l � 
( � 0 { �© ¬ 
 | © " _ « { � © � 
 | ©

l®­ � _ ¯ l p�
where

¯ � � 1 %
% � 1 " ª %
% x � � « � � 
 � ¯ 0 � 
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The soft scalar mass -function

l°� g � _ ¯ ¯ ± � _ £ £ 1 � 1 %
% � 1 � � x %
% x �YX X � } %
% � 0

where

x ©� ² � � x ©� ² � ±

, and

� x � 
 d � x ©{ 
 d � � 1 � � | ©
Here

}

NSVZ

� " _ � B� M�q 1 r t : ~ � � � 1 u �. � � " ± u � ^ �

� " _ u � ^ � � 1 � � M�q 1 � t : E

}

NSVZ is known through three loops.
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The RS anzatz for QCD

l e\p � � B� M�q 1
³

´ Z " 1B 0� 9 � µ �. �

� " _ u � ^ � � 1 � � M�q 1 � t : � � _ m�¶ · { e | t ¸ { � |¹

º
»

where 0� is the fermion mass anomalous dimension. In
the special case of a single fermion adjoint multiplet
(corresponding to

9 � � susy) they equate this to

l m\ nop � " G � B u � ^ �
� M�q 1 ¼ � � " _ u � ^ � � 1 � � M�q 1 � t : �

to deduce that then

0� � " M �
1 u � ^ �

� M q 1 ¼ � � " _ u � ^ � � 1 � � M�q 1 � t : �
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But in this case the 0� is the

l

-function for the gaugino
mass; a soft breaking term. Consequently it is given in the
NSVZ scheme by the formula

l½­ � _ ¯ l p� �
i.e.

0 m\ no� � " M �
1 u � ^ �

� M q 1 �

� � " _ u � ^ � � 1 � � M�q 1 � t : � 1

So: I can calculate in the DRED and DREG schemes, and
relate the results to each other and to the NSVZ scheme;
but I don’t know how to calculate in the RS scheme.
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Summary

In supersymmetric theories use DRED.

In softly-broken supersymmetric theories use DRED’.

In non-supersymmetric theories use DREG.
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