

NLO QCD corrections to off-shell $t\bar{t}$ production at hadron colliders

Stefan Dittmaier Albert-Ludwigs-Universität Freiburg

- in collaboration with A.Denner, S.Kallweit and S.Pozzorini -

Contents

- 1 Introduction
- 2 Features of the NLO calculation
- 3 Numerical results
 - 3.1 Fixed versus dynamical scale
 - 3.2 Off-shell effects of the top quarks
 - 3.3 Off-shell effects of the W bosons
 - 3.4 Comparison to other work
- 4 Conclusions

Introduction

$t \bar t$ production @ Tevatron/LHC – physics issues

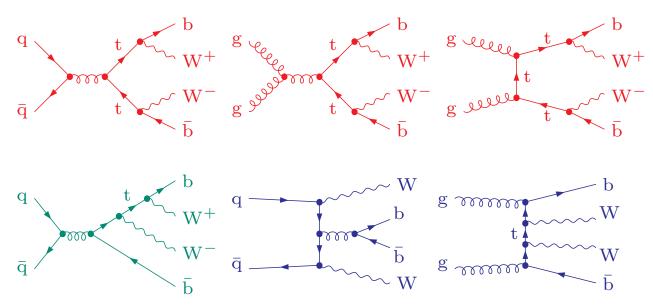
- precision measurement of $m_{
 m t}$
- FB asymmetry @ Tevatron
- top-spin physics @ LHC
- EW top couplings via $t\bar{t} + \gamma/Z/H$
- $t\bar{t}$ delivers background to many new-physics searches (large cross section with signatures of missing E_T , jets, leptons)
- ⇒ Precision calculations necessary that
 - comprise the relevant fixed-order QCD & EW corrections
 - include the top-quark decays to the relevant partonic final states
 - \hookrightarrow full reactions $pp/p\bar{p} \rightarrow b\bar{b} + 2\ell 2\nu /\ell \nu 2j/4j$
 - are improved by QCD resummations or matched parton showers
 - are interfaced to Pythia/Herwig/Sherpa for detector simulations

${ m t} { m t} { m f}$ production @ Tevatron/LHC – physics issues

- precision measurement of $m_{
 m t}$
- FB asymmetry @ Tevatron
- top-spin physics @ LHC
- EW top couplings via $t\bar{t} + \gamma/Z/H$
- $t\bar{t}$ delivers background to many new-physics searches (large cross section with signatures of missing E_T , jets, leptons)
- ⇒ Precision calculations necessary that
 - comprise the relevant fixed-order QCD & EW corrections
 - include the top-quark decays to the relevant partonic final states \hookrightarrow full reactions $pp/p\bar{p} \rightarrow b\bar{b} + 2\ell 2\nu /\ell \nu 2j/4j$
 - are improved by QCD resummations or matched parton showers
 - are interfaced to Pythia/Herwig/Sherpa for detector simulations

Considered in this talk!

Brief history of precision calculations for hadronic $t\bar{t}$ production


- NLO QCD corrections Nason et al. '89; Beenakker et al. '91; Mangano et al. '92; Frixione et al. '95
- NLO EW corrections

 Beenakker et al. '94; S.Moretti et al. '06; Kühn et al. '06; Hollik et al. '07–'11; Bernreuther et al. '08
- QCD resummations
 Laenen et al. '92; Catani et al. '96; Berger et al. '96; Kidonakis et al. '97–'01;
 Bonciani et al. '98; Beneke et al. '09–'11; Czakon et al. '09–'11;
 Ahrens et al. '10–'11; Kidonakis '10–'11; Aliev et al. '10; Cacciari et al. '11
- Steps towards NNLO QCD Czakon et al. '07–'08; S.D. et al. '07; Kniehl et al. '08; Anastasiou et al. '08; Bonciani et al. '08–'09; Gehrmann-De Ridder et al. '09; Czakon '10–'11
- NLO QCD inclusion of top decays in NWA Bernreuther et al. '04–'10; Melnikov et al. '09
- NLO QCD full $b\bar{b} + 2\ell 2\nu$ final states

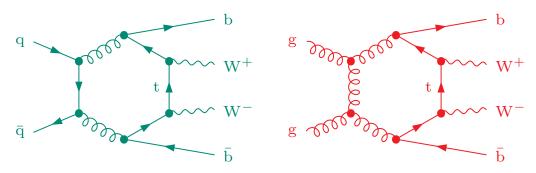
 Denner et al. '10; Bevilacqua et al. '10

Features of the NLO calculation

Leading-order calculation

... W decays attached everywhere

- specific process: $pp/p\bar{p} \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b}$
- # tree diagrams: $q\bar{q}$: 31 (14 for on-shell W's) gg: 79 (38 for on-shell W's)
- 2, 1, or 0 intermediate top-quark resonances
- 2 or 1 intermediate W-boson resonances
- 14-dim. phase space → multi-channel Monte Carlo integration


NLO – virtual corrections

• # 1-loop diagrams: (on-shell W's, fermion loops of one generation)

 $q\bar{q}$: 294 (4 hexagons, 24 pentagons, ...)

gg: 795 (21hexagons, 96 pentagons, ...)

• most complicated representatives: hexagons with tensors up to rank 4 for $q\bar{q}$ and rank 5 for gg

... W decays attached everywhere

• 2, 1, 0 intermediate top-quark resonances

Treatment of intermediate resonances

Top-quark resonances

- full off-shellness kept everywhere
- complex-mass scheme Denner, S.D., Roth, Wieders '05
 - $\hookrightarrow \mu_{\rm t}^2 = m_{\rm t}^2 {\rm i} m_{\rm t} \Gamma_{\rm t} =$ location of complex pole in propagator
- generic size of off-shell effects in $\sigma_{\rm tot}$: $\sim \Gamma_{\rm t}/m_{\rm t} \lesssim 1\%$ (numerically confirmed)

W-boson resonances

- leptonic W decays included
- W off-shell effects to "top-inclusive observables" doubly suppressed:

$$\sigma_{b\bar{b}2\ell2\nu} \sim \sigma_{t\bar{t}} \times (\Gamma_{t\to b\ell\nu}/\Gamma_t)^2 \leftarrow W \text{ off-shellness cancels in top BR's}$$

- treatment of W off-shellness:
 - full off-shellness kept at LO and in real corrections (complex-mass scheme)
 - virtual corrections in "double-pole approximation" (=resonance expansion)
 - → NLO accuracy near W resonances, LO for far-off-shell W's

But: concept applicable to electroweak corrections (otherwise proliferation of complexity)

Our Feynman-diagrammatic approach for virtual 1-loop corrections

$$\mathcal{M}_{\mathrm{1-loop}} = \sum_{\mathrm{(sub)diagrams}\ \Gamma} \mathcal{M}_{\Gamma}$$
 generated with FEYNARTS (Küblbeck et al. '90; Hahn '01)

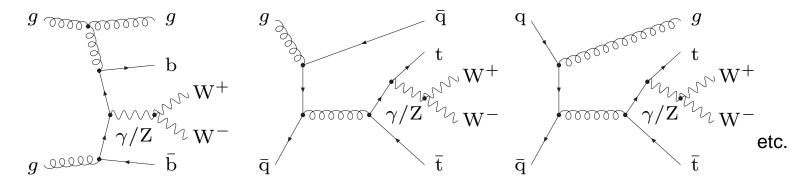
$$\mathcal{M}_{\Gamma} = \sum_{n} \underbrace{C^{(\Gamma)}}_{\text{colour factor}} \underbrace{F_{n}^{(\Gamma)}}_{\uparrow} \underbrace{\hat{\mathcal{M}}_{n}}_{\text{spin structures like }} [\bar{u}_{b}(k_{b}) \not \in_{g_{1}}(k_{g_{1}}) v_{\bar{b}}(k_{\bar{b}})] (\varepsilon_{g_{2}}(k_{g_{2}}) \cdot k_{b}) \dots$$

invariant functions containing

1-loop tensor integrals $T^{\mu\nu\rho...}$

$$T^{\mu\nu\rho...} = (p_k^{\mu} p_l^{\nu} p_m^{\rho} ...) T_{kl...} + (g^{\mu\nu} p_m^{\rho} ...) T_{00m...} + ...$$

 $T_{kl...}$ = linear combination of scalar 1-loop integrals A_0, B_0, C_0, D_0


- 5-/6-point integrals reduced to 4-point integrals Denner, S.D. '02,'05
- 4-/3-point integrals reduced à la Passarino/Veltman '79 for regular points
- specially designed methods for rescuing cases with small Gram dets. Denner, S.D. '05
- $-A_0,...,D_0$ with complex masses Denner, S.D. '10

Features: – advantage: get all colour/spin channels in one stroke

- lengthy algebra ightarrow automation (Mathematica) $ightarrow \sim 4.5$ Mio lines of code
- two independent calculations, one using features of FORMCALC (Hahn)

Corrections due to real radiation

Salient features:

- multi-channel Monte Carlo integration over phase space

Catani, Seymour '96; S.D. '99 Phaf, Weinzierl '01 Catani, S.D., Seymour, Trócsányi '02

$$\sigma^{\text{NLO}} = \underbrace{\int_{m+1} \left[\mathrm{d}\sigma^{\text{real}} - \mathrm{d}\sigma^{\text{sub}} \right]}_{\text{finite}} + \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\text{virtual}} + \mathrm{d}\bar{\sigma}^{\text{sub}}_{1} \right]}_{\text{finite}} + \int_{0}^{1} \mathrm{d}x \underbrace{\int_{m} \left[\mathrm{d}\sigma^{\text{fact}}(x) + \left(\mathrm{d}\bar{\sigma}^{\text{sub}}(x) \right)_{+} \right]}_{\text{finite}}$$

• two alternative IR regularizations: dim. reg. / mass reg. (small $m_{
m q}, m_{
m b}$)

Runtime of various parts of the calculation

Typical setup: -2×10^7 events before applying cuts

single 3 GHz Intel Xeon processor

pgf77 compiler

Some statistics:

	$\sigma/\sigma_{ m LO}$	# events (after cuts)	$(\Delta\sigma)_{\mathrm{stat}}/\sigma$	runtime	time/event
tree level	86%	5.3×10^{6}	0.4×10^{-3}	38 min	$0.4\mathrm{ms}$
virtual	-11%	0.26×10^6	0.6×10^{-3}	$13\mathrm{h}$	$180\mathrm{ms}$
real + dipoles	49%	10×10^6	3×10^{-3}	$40\mathrm{h}$	$14\mathrm{ms}$
total	124%		4×10^{-3}	53 h	

Numerical results

Setup – most relevant details

• two scale choices: $(\mu = \mu_{\rm R} = \mu_{\rm F})$

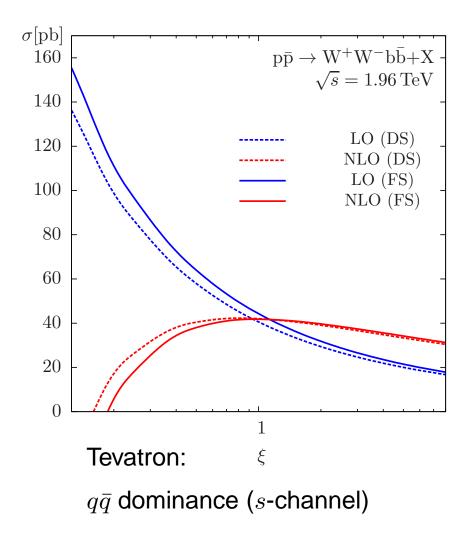
fixed scale (FS): $\mu_0=m_{\rm t}$ dynamical scale (DS): $\mu_{\rm dyn}=\sqrt{\sqrt{m_{\rm t}^2+p_{\rm T,t}^2}\sqrt{m_{\rm t}^2+p_{\rm T,\bar{t}}^2}}$

• top-quark width: two different values with on- or off-shell W's

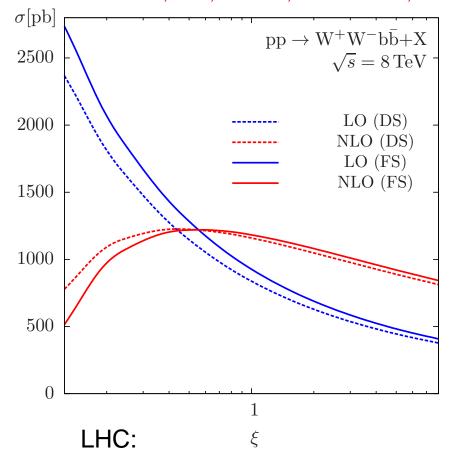
Jezabek/Kühn '89

→ necessary to receive consistent (effective) branching ratios

 $\begin{array}{ll} W \text{ off shell:} & \Gamma_{\rm t,LO} = 1.4655\,{\rm GeV}, & \Gamma_{\rm t,NLO} = 1.3376\,{\rm GeV} \\ W \text{ on shell:} & \Gamma_{\rm t,LO} = 1.4426\,{\rm GeV}, & \Gamma_{\rm t,NLO} = 1.3167\,{\rm GeV} \end{array} \right\} \text{ differ by } 1.6\%$

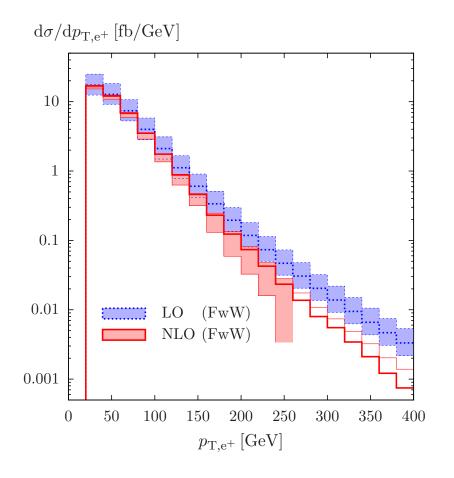

- W/Z-boson widths: NLO QCD predictions everywhere (only leptonic W decays, no imbalance in BR's)
- More details:

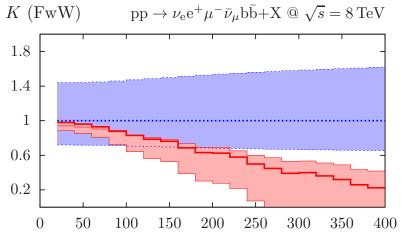
 G_{μ} scheme for EW couplings, $m_{\rm b}=0$, $M_{\rm H}\to\infty$, MSTW2008(N)LO PDFs, $N_F=5$, anti- $k_{\rm T}$ algorithm with R=0.4(0.5) for Tev.(LHC), cuts: $p_{\rm T,b}>20(30)\,{\rm GeV}, |\eta_{\rm b}|<2.5, p_{\rm T,miss}>25(20)\,{\rm GeV}, p_{\rm T,l}>20\,{\rm GeV}, |\eta_{\rm l}|<2.5$


3.1 Fixed versus dynamical scale

Scale dependence of integrated cross sections

$$\mu = \mu_{\rm R} = \mu_{\rm F}, \quad \mu_{\rm FS} = \xi \, m_{\rm t}, \quad \mu_{\rm DS} = \xi \, \mu_{\rm dyn}$$

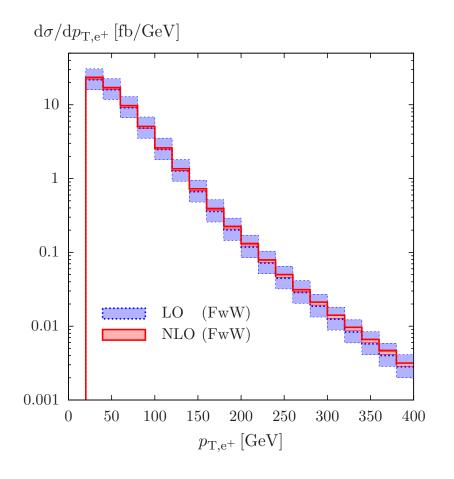

Denner, S.D., Kallweit, Pozzorini '10,'12

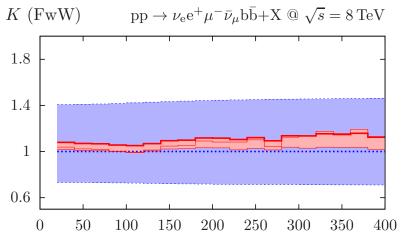


gg dominance (t-channel)

NLO QCD corrections to $p_{\rm T}$ distributions – example: leptonic $p_{\rm T}$

Denner, S.D., Kallweit, Pozzorini '12

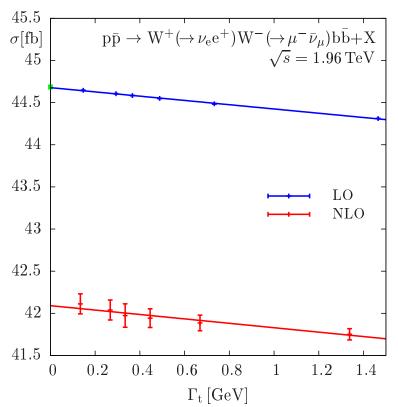

central scale: $\mu = m_{\rm t}/2$ $(\xi = 1/2)$


Fixed scale implies large negative corrections at high p_{T}

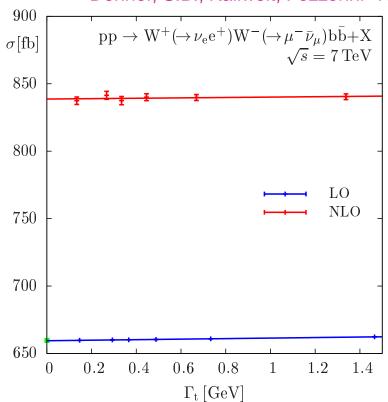
(Bands correspond to scale variations by factors of 2.)

NLO QCD corrections to $p_{\rm T}$ distributions – example: leptonic $p_{\rm T}$

Denner, S.D., Kallweit, Pozzorini '12


central scale: $\mu = \mu_{\rm dyn}/2$ ($\xi = 1/2$)

Dynamical scale leads to much flatter K factor

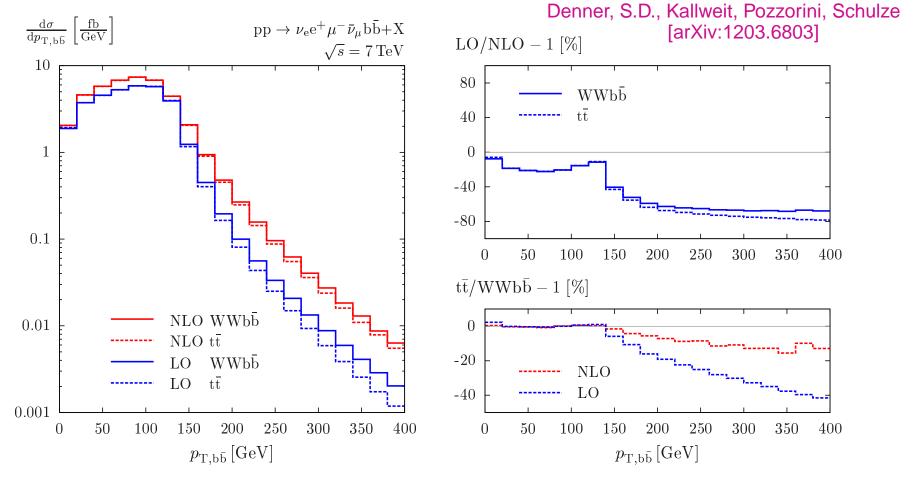

(Bands correspond to scale variations by factors of 2.)

3.2 Off-shell effects of the top quarks

Numerical $\Gamma_{\rm t} \to 0$ limit for integrated cross sections

Denner, S.D., Kallweit, Pozzorini '10,'12

- virtual and real corrections involve terms $\propto \alpha_{\rm s} \ln \Gamma_{\rm t}$
- linear dependence on $\Gamma_{\rm t}$ = non-trivial check

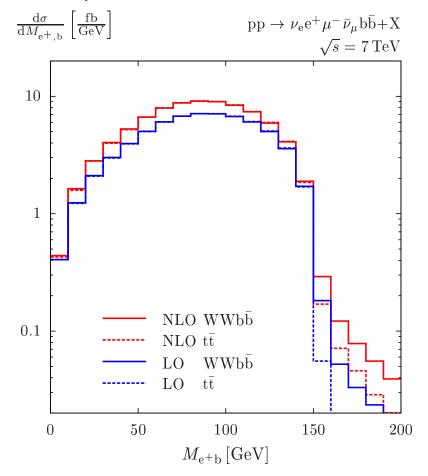

Collider	$\sqrt{s} \; [\text{TeV}]$	order	$\sigma_{ m tar{t}}^{ m NWA}$ [fb]	$\sigma_{ m WWbar{b}}$ [fb]	$\frac{\sigma_{ m tar{t}}^{ m NWA}}{\sigma_{ m WWbar{b}}} - 1$	$\frac{\sigma_{\rm WWb\bar{b}}^{\Gamma_{\rm t}\to 0}}{\sigma_{\rm WWb\bar{b}}} - 1$
Tevatron	1.96	LO	44.691(8)	44.310(3)	+0.86(2)%	+ 0.8%
		NLO	42.16(3)	41.75(5)	+0.98(14)%	+0.9%
LHC	7	LO	659.5(1)	662.35(4)	-0.43(2)%	-0.4%
		NLO	837(2)	840(2)	-0.41(31)%	-0.2%
LHC	14	LO	3306.3(1)	3334.6(2)	-0.85(1)%	_
		NLO	4253(3)	4286(7)	-0.77(19)%	_

- good agreement between our $\sigma^{\Gamma_t \to 0}_{WWb\bar{b}}$ and $\sigma^{NWA}_{t\bar{t}}$ from Melnikov/Schulze \hookrightarrow confirms $\Gamma_{\rm t} \to 0$ extrapolation
- size of top off-shell effects to integrated cross sections

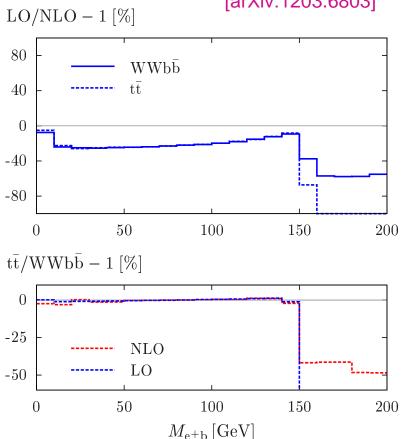
 - $\sim 1\% \sim \Gamma_{\rm t}/m_{
 m t}$ ightarrow corresponds to naive expectation

top off-shell effects in the $p_{\mathrm{T,bar{b}}}$ distribution

 \hookrightarrow relevant for background studies to $WH(\to b\bar b)$ searches



- kinematical suppression for on-shell top's in LO: $p_{\mathrm{T,bar{b}}} < (m_{\mathrm{t}}^2 M_{\mathrm{W}}^2)/m_{\mathrm{t}} \sim 135\,\mathrm{GeV}$
- cross section and K factor well described by NWA for $p_{\rm T,b\bar{b}} \lesssim 150\,{\rm GeV}$
- top off-shell effects reach 10-40% for $p_{\mathrm{T,b\bar{b}}}\sim200-400\,\mathrm{GeV}$



top off-shell effects in the $M_{\mathrm{e^+b}}$ distribution

\hookrightarrow important for $m_{\rm t}$ measurement

Denner, S.D., Kallweit, Pozzorini, Schulze [arXiv:1203.6803]

- kinematical edge for on-shell top's in LO: $M_{
 m e^+b} < \sqrt{m_{
 m t}^2 M_{
 m W}^2} \sim 150\,{
 m GeV}$
- cross section and K factor well described by NWA for $M_{\mathrm{e^+b}} \lesssim 150 \, \mathrm{GeV}$
- top off-shell effects reach some 10% for $M_{\rm e^+b}\gtrsim 150\,{\rm GeV}$

3.3 Off-shell effects of the \boldsymbol{W} bosons

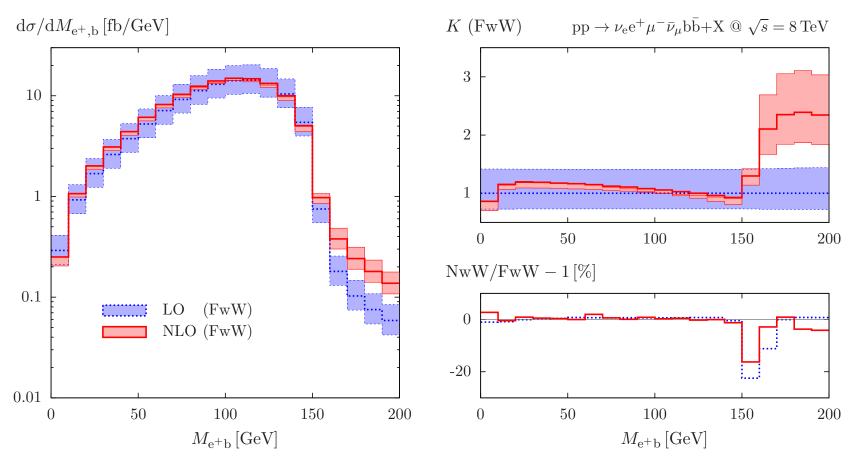
Preliminary consideration

Cancellation of effects in σ and $\Gamma_{\rm t}$ ("effective BR's")

 \hookrightarrow double suppression $\sim \frac{\Gamma_{\rm t}}{m_{\rm t}} \frac{\Gamma_{\rm W}}{M_{\rm W}} \times ... < 0.5\%$ effect hardly visible where top-quark resonances dominate

Total cross section @ LHC with CM energy $8\,\mathrm{TeV}$ Denner, S.D., Kallweit, Pozzorini '12

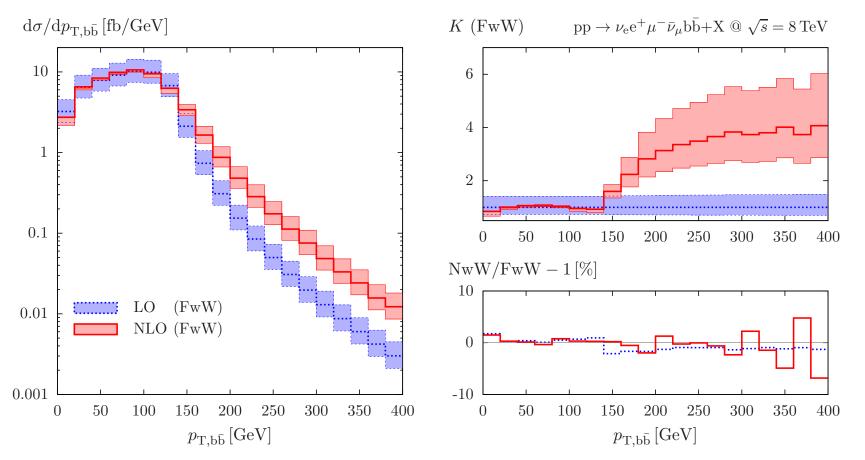
scale	$\Gamma_{ m W}$	$\sigma_{ m LO}[{ m fb}]$	$\sigma_{ m NLO}[{ m fb}]$
FS	narrow	$1283.3(2)_{-27.8\%}^{+43.1\%}$	$1219(3)_{-3.0\%}^{-11.3\%}$
FS	finite	$1278.1(2)_{-27.8\%}^{+43.2\%}$	$1212(3)_{-3.0\%}^{-11.4\%}$
DS	narrow	$1146.3(2)_{-26.9\%}^{+41.1\%}$	$1225(3)_{-5.3\%}^{-5.2\%}$
DS	finite	$1141.7(2)_{-26.9\%}^{+41.1\%}$	$1218(2)_{-5.3\%}^{-5.3\%}$


 \hookrightarrow W off-shell effect $\sim 0.4\%$ (decreasing with looser cuts) (similar at Tevatron and LHC @ 7 and $14\,\mathrm{TeV})$

Note: $\Gamma_{\rm t}/m_{\rm t} = 0.8\%$, $\Gamma_{\rm W}/M_{\rm W} = 3\%$

 \hookrightarrow additional suppression beyond $\Gamma_{\rm W}/M_{\rm W}$ confirmed !

m W off-shell effects in the $M_{ m e^+b}$ distribution


Denner, S.D., Kallweit, Pozzorini '12

W off-shell effect relevant ($\sim 10-20\%$) near on-shell edge at $M_{
m e^+b} \sim 150\,{
m GeV}$

m W off-shell effects in the $p_{ m T,bar b}$ distribution

Denner, S.D., Kallweit, Pozzorini '12

W off-shell effects reach some % for $p_{\mathrm{T,b\bar{b}}} > 150\,\mathrm{GeV}.$

Generic conclusion on W off-shellness:

- ullet < 0.5% where top resonances dominate
- LO inclusion generally sufficient

3.4 Comparison to other work

Input tuned to Bevilacqua et al. [HELAC-NLO] arXiv:1012.4230 [hep-ph]


collider	energy	$\sigma_{ m LO}[{ m fb}]$	$\sigma_{ m LO}[{ m fb}]$	$\sigma_{ m NLO}[{ m fb}]$	$\sigma_{ m NLO}[{ m fb}]$
		HELAC-NLO	our result	HELAC-NLO	our result
Tevatron	$1.96\mathrm{TeV}$	34.922(14)	34.921(5)	35.705(47)	35.850(45)
LHC	$7\mathrm{TeV}$	550.54(18)	550.29(7)	808.46(98)	806.0(1.0)
LHC	$10\mathrm{TeV}$	1394.72(75)	1394.6(2)	1993.3(2.5)	1984.6(3.4)
		$\Delta \sim 1\sigma < 0.1\%$		$\Delta \sim 2\sigma \sim$	0.3 - 0.4%

Good agreement

Loop results for single phase-space points: ($m_{\rm t}$ kept real)

MadLoop and GoSam results mutually agree

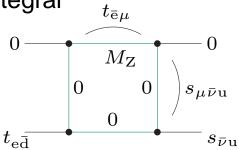
But: no contact yet made to HELAC-NLO and our work

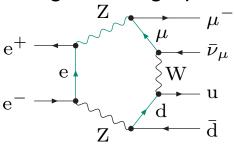
Conclusions

NLO QCD predictions for $pp/p\bar{p} \to WWb\bar{b} \to \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b}$

- two calculations available and in agreement (DDKP and HELAC-NLO)
- top-quark off-shell effects
 - $\diamond \sim 1\%$ as long as top resonances dominate (e.g. $\sigma_{
 m tot}$)
 - \diamond can rise to effects > 10% for off-shell top's (e.g. in $M_{\rm e^+b}$, $p_{\rm T,b\bar{b}}$ distributions) \hookrightarrow relevance for $m_{\rm t}$ determination, some background studies, etc.
- W-boson off-shell effects
 - \diamond suppressed (< 0.5%) as long as top resonances dominate
 - LO treatment should be sufficient also in off-shell tails
 - \diamond to be included in $\Gamma_{\rm t}$ as well

Outlook / possible use of the new results


- ullet further correction $\sim 1\%$ to state-of-the-art prediction of $\sigma_{
 m tar t}$
- implementation into multi-purpose MC & parton-shower matching
 - \hookrightarrow application in $m_{\rm t}$ determinations
- further improvement by EW corrections


Backup slides

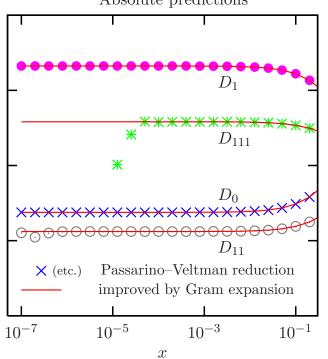
A typical (older) example with small Gram determinant:

Box integral

appears, e.g., in subgraph of diagram

$$\det(\operatorname{Gram}) \to 0$$

$$t_{
m e\bar{d}} \rightarrow t_{
m cr}$$


$$\equiv rac{s_{\muar
u\mathrm{u}}(s)}{s}$$

Gram det.:
$$\det(\operatorname{Gram}) \to 0$$
 if $t_{\operatorname{e\bar{d}}} \to t_{\operatorname{crit}} \equiv \frac{s_{\mu\bar{\nu}\mathrm{u}}(s_{\mu\bar{\nu}\mathrm{u}} - s_{\bar{\nu}\mathrm{u}} + t_{\bar{\mathrm{e}}\mu})}{s_{\mu\bar{\nu}\mathrm{u}} - s_{\bar{\nu}\mathrm{u}}}$

Numerical comparison:

maximal tensor rank = 6 (similar to $ee \rightarrow 4f$ application)

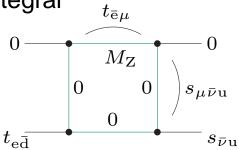
Absolute predictions

Relative deviations from "best" Passarino-Veltman region 10^{-6} 10^{-8} 10^{-10} 10^{-12} 10^{-3} 10^{-1} \boldsymbol{x}

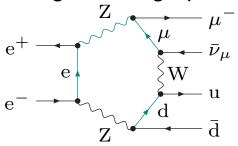
$$x \equiv \frac{t_{\text{ed}}}{t_{\text{crit}}} - 1$$

$$s_{\mu\bar{\nu}u} = +2 \times 10^4 \,\text{GeV}^2$$

$$s_{\bar{\nu}u} = +1 \times 10^4 \,\text{GeV}^2$$


$$t_{\bar{e}\mu} = -4 \times 10^4 \,\text{GeV}^2$$

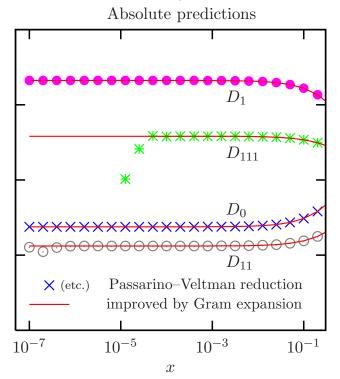
$$t_{\text{crit}} = -6 \times 10^4 \,\text{GeV}^2$$

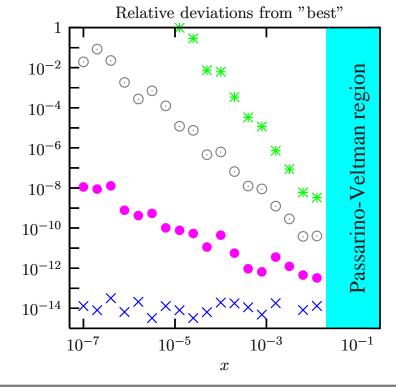

PV reduction breaks down. but Gram exp. stable for $det(Gram) \rightarrow 0!$

A typical (older) example with small Gram determinant:

Box integral

appears, e.g., in subgraph of diagram


$$\det(\operatorname{Gram}) \to 0$$


$$t_{
m ear{d}}
ightarrow t_{
m crit}$$

Gram det.:
$$\det(\operatorname{Gram}) \to 0$$
 if $t_{\operatorname{ed}} \to t_{\operatorname{crit}} \equiv \frac{s_{\mu \bar{\nu} \mathrm{u}} (s_{\mu \bar{\nu} \mathrm{u}} - s_{\bar{\nu} \mathrm{u}} + t_{\bar{\mathrm{e}} \mu})}{s_{\mu \bar{\nu} \mathrm{u}} - s_{\bar{\nu} \mathrm{u}}}$

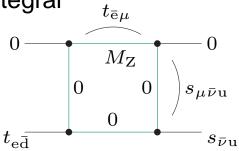
Numerical comparison:

maximal tensor rank = 12

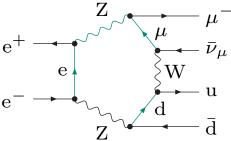
$$x \equiv \frac{t_{\text{ed}}}{t_{\text{crit}}} - 1$$

$$s_{\mu\bar{\nu}u} = +2 \times 10^4 \,\text{GeV}^2$$

$$s_{\bar{\nu}u} = +1 \times 10^4 \,\text{GeV}^2$$


$$t_{\bar{e}\mu} = -4 \times 10^4 \,\text{GeV}^2$$

$$t_{\text{crit}} = -6 \times 10^4 \,\text{GeV}^2$$

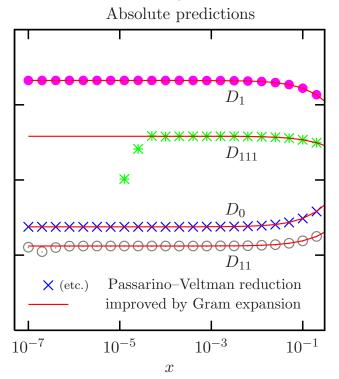

PV reduction breaks down, but Gram exp. stable for $\det(\operatorname{Gram}) \to 0$!

A typical (older) example with small Gram determinant:

Box integral

appears, e.g., in subgraph of diagram

Gram det.:


$$\det(\operatorname{Gram}) \to 0$$


$$\det(\operatorname{Gram}) \, o \, 0 \quad \mathsf{if} \quad t_{\operatorname{ed}} \, o \, t_{\operatorname{crit}} \equiv rac{s_{\muar{
u}\mathrm{u}}(s_{\muar{
u}\mathrm{u}} - s_{ar{
u}\mathrm{u}} + t_{ar{
e}\mu})}{s_{\muar{
u}\mathrm{u}} - s_{ar{
u}\mathrm{u}}}$$

$$\frac{s_{\muar
u}-s_{ar
u}+t_{ar{\mathrm{e}}\mu})}{s_{\muar
u}-s_{ar
u}}$$

Numerical comparison:

maximal tensor rank = 25

$$x \equiv \frac{t_{\text{ed}}}{t_{\text{crit}}} - 1$$

$$s_{\mu\bar{\nu}u} = +2 \times 10^4 \,\text{GeV}^2$$

$$s_{\bar{\nu}u} = +1 \times 10^4 \,\text{GeV}^2$$

$$t_{\bar{e}\mu} = -4 \times 10^4 \,\text{GeV}^2$$

$$t_{\text{crit}} = -6 \times 10^4 \,\text{GeV}^2$$

PV reduction breaks down. but Gram exp. stable for $\det(\operatorname{Gram}) \to 0$!