
Potential of FORM 4.0

J.A.M. Vermaseren

Nikhef (and UAM Madrid)

• Introduction

• Factorization

• Rational Polynomials

• New Functions

• Miscellaneous

• What brings the future?

Introduction

Over the past 12 years Form was available as version 3.0-3.3. This
version was significantly more powerful than version 2. But also these
versions needed extensions. During the past few years there were a few
opportunities to hire extra people for special contributions and devel-
opment picked up speed. A number of much needed but very labour
intensive projects were undertaken and completed. This marked a good
point to clean up the whole program, make it open source and bring it
out as a new version.

On March 29 version 4.0 was released. It took much more time than
thought to prepare this release, because there are quite a few new features
and the debugging was a slow procedure. In addition making the source
code available and easy installable took a lot of work.

Most work for version 4.0 has been put in by Jan Kuipers, Takahiro
Ueda, Jens Vollinga and me. Other people (and Jens) who worked on
Form in the past have left the field and the current team consists of
Jan Kuipers, Takahiro Ueda and me. Jan will leave in the autumn. This
means that the speed of advances will be slowed down until there are
new opportunities to hire good people.

Jens Vollinga has added a number of very nice features to Form, in-
cluding systems independent .sav files, checkpoints (points from which a
program can be restarted if it crashes), much documentation, the forum
and he designed much of the open source infrastructure.

Jan Kuipers has made the factorization and polynomial libraries and is
currently working on a completely new method for output simplification.

Takahiro Ueda has been hired by Karlsruhe on DFG money with the
task to improve the parallelization of Form. The project is to combine
TForm and ParForm to make use of clusters of multicore computers.
This project is still in its infancy, because his first task was to make
ParForm complete. This has been finished now. He has also taken over
the task to manage the open source infrastructure.

This talk will take us through a number of new features and in the end
give a few hints about what the future might bring.

The first thing the user will notice is the new header.

FORM 4.0 (Mar 29 2012) 64-bits Run: Wed Apr 4 14:23:50 2012

The mentioning of the 64/32-bits version is for version 4, because we are
in a period that many people still use 32-bits computers or operating
systems. Other headers are

TFORM 4.0 (Mar 29 2012) 64-bits 8 workers Run: Wed Apr 4 14:24:22 2012

or

ParFORM 4.0 (Mar 29 2012) 64-bits 8 workers Run: Wed Apr 4 14:32:45 2012

Factorization

The first feature we are going to look at is one that many people have
asked for in the past.
It should be realized that factorization is a subject that many mathe-
maticians have given attention to. In addition big commercial programs
have spent much effort on making good packages for this. Hence one
should not expect to outperform other packages. The best model here is
to look whether there are packages under the GNU license that have been
created and are maintained by good mathematicians. Unfortunately we
could not find any that deal with more than a single variable. The better
packages are all closed source and part of a commercial system. This
means we had to make our own. But then we could optimize it for what
we anticipate that the use will be.

Symbols x,y,z;

CFunction f;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+z)*(x*y+4*z^2+3*y*z^4-7*x^2*y));

Print;

.sort

F=

f(4*y*z^3+3*y^2*z^5+4*x*z^3+4*x*y*z^2+3*x*y*z^5+x*y^2*z+3*x*y^2*

z^4+4*x^2*z^2+x^2*y*z+3*x^2*y*z^4+x^2*y^2-7*x^2*y^2*z+x^3*y-7*x^3

*y*z-7*x^3*y^2-7*x^4*y);

FactArg,f;

Print;

.end

F=

f(y+x,z+x,4*z^2+3*y*z^4+x*y-7*x^2*y);

The first example shows the factorization of function arguments. This
is probably the most important use in complicated calculations. The
FactArg statement is natural for this.

Factorization of expressions is a bit more complicated. How to (re)present
the results?

#define MAX "5"

#define TERMS "6"

#define POW "3"

Symbols a1,...,a‘MAX’,j;

Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*

<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

Print;

.sort

F1=

5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*a1*

a2^2*a3*a4^2+a1^2*a4^2*a5;

F2=

2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*a1^2*

a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2;

F3=

6*a3^2*a4*a5^2+5*a2*a3*a4^2+a1*a2*a3^2*a5+a1^2*a3^2*a4^2*a5+4*

a1^2*a2*a3*a4^2+a1^2*a2^2*a3^2*a4^2;

F4=

6*a2^2*a4^2*a5+4*a2^2*a3^2*a4*a5^2+4*a1*a2*a3^2*a4^2+a1^2*a2*a3+6

*a1^2*a2*a3^2*a5^2+a1^2*a2^2*a5^2;

F5=

5*a2*a3^2*a4^2*a5+3*a1*a3^2*a4^2+2*a1*a2*a3*a4^2*a5+a1^2*a3+5*

a1^2*a2^2*a3^2*a4*a5+a1^2*a2^2*a3^2*a4*a5^2;

On Statistics;

Drop;

Local F = F1*...*F‘MAX’;

.sort

Time = 0.02 sec Generated terms = 7776

F Terms in output = 5540

Bytes used = 158532

Factorize;

Print;

.end

Time = 0.02 sec Generated terms = 5540

F Terms in output = 5540

Bytes used = 158532

Time = 1.65 sec Generated terms = 33

F Terms in output = 33

factorize Bytes used = 1684

F=

(a3)

*(a3)

*(6*a3*a4*a5^2+5*a2*a4^2+a1*a2*a3*a5+a1^2*a3*a4^2*a5+4*a1^2*a2*

a4^2+a1^2*a2^2*a3*a4^2)

*(2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*a1^2

*a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2)

*(a2)

*(5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*a1*

a2^2*a3*a4^2+a1^2*a4^2*a5)

*(6*a2*a4^2*a5+4*a2*a3^2*a4*a5^2+4*a1*a3^2*a4^2+a1^2*a3+6*a1^2*

a3^2*a5^2+a1^2*a2*a5^2)

*(5*a2*a3*a4^2*a5+3*a1*a3*a4^2+2*a1*a2*a4^2*a5+a1^2+5*a1^2*a2^2*

a3*a4*a5+a1^2*a2^2*a3*a4*a5^2);

Factorization is considered a ‘state’ in which the expression exists. It is
either factorized or unfactorized. Conversion takes place at the end of
the module after the expression has been processed and sorted. Hence
we have two output statistics. The second one refers to the factorization
procedure. To store the factorized expression we use the Form bracket
system with the built in symbol factor . This allows also a way to refer
to the brackets.

The execution time depends critically on how complicated the expression
is. If we raise the powers of the variables we can see the effect:

#define MAX "5"

#define TERMS "6"

#define POW "4"

Symbols a1,...,a‘MAX’,j;

Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

Local F‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*

<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

Print;

.sort

F1=

6*a1^2*a2*a3^2*a5+6*a1^2*a2*a3^3*a4^2*a5+3*a1^2*a2^2*a3^3*a5^2+

a1^2*a2^3*a3*a4^3*a5^3+5*a1^3*a2^3*a3*a4^3*a5+5*a1^3*a2^3*a3^2*a4

*a5^2;

F2=

a4^2*a5+2*a1*a2^3*a3^3*a5+4*a1^2*a2*a3*a5^2+2*a1^2*a2*a3^3*a4^3*

a5^3+2*a1^2*a2^2*a4*a5+2*a1^3*a2^2*a3*a4^3*a5;

F3=

5*a2+6*a2^3*a4*a5^3+4*a1*a3*a4^3*a5+a1*a2^2*a4*a5+a1*a2^3*a3^3*

a4^3*a5+a1^3*a3^3*a4^3;

F4=

6*a2*a3^2*a4^2*a5^2+a2^3*a3^3*a4^3*a5+4*a1*a2*a3^3*a4^2*a5^2+4*a1

*a2^2*a3^3*a4^3*a5+a1^2*a2^2*a3*a5^2+6*a1^3*a2^2*a3*a5;

F5=

3*a1*a2^3*a3^3*a4^2+a1^2*a3*a4^2*a5^3+2*a1^2*a2*a4+a1^2*a2*a3*a4*

a5^2+5*a1^2*a2^2*a4^2+5*a1^3*a3^2*a4^3;

On Statistics;

Drop;

Local F = F1*...*F‘MAX’;

.sort

Time = 0.01 sec Generated terms = 7776

F Terms in output = 7125

Bytes used = 213980

Factorize;

Print;

.end

Time = 0.01 sec Generated terms = 7125

F Terms in output = 7125

Bytes used = 213980

Time = 77.67 sec Generated terms = 41

F Terms in output = 41

factorize Bytes used = 2116

F=

(a5)

*(a5)

*(a5)

*(a4)

*(a4^2+2*a1*a2^3*a3^3+4*a1^2*a2*a3*a5+2*a1^2*a2*a3^3*a4^3*a5^2+2*

a1^2*a2^2*a4+2*a1^3*a2^2*a3*a4^3)

*(a3)

*(a3)

*(6*a3+6*a3^2*a4^2+3*a2*a3^2*a5+a2^2*a4^3*a5^2+5*a1*a2^2*a4^3+5*

a1*a2^2*a3*a4*a5)

*(6*a3*a4^2*a5+a2^2*a3^2*a4^3+4*a1*a3^2*a4^2*a5+4*a1*a2*a3^2*a4^3

+a1^2*a2*a5+6*a1^3*a2)

*(a2)

*(a2)

*(5*a2+6*a2^3*a4*a5^3+4*a1*a3*a4^3*a5+a1*a2^2*a4*a5+a1*a2^3*a3^3*

a4^3*a5+a1^3*a3^3*a4^3)

*(3*a2^3*a3^3*a4+a1*a3*a4*a5^3+2*a1*a2+a1*a2*a3*a5^2+5*a1*a2^2*a4

+5*a1^2*a3^2*a4^2)

*(a1)

*(a1)

*(a1);

It is also possible to put expressions in the input in factorized form:

Symbols x,y,z;

LocalFactor F = (x+1)*(x+y)*(z+2)^2*((x+2)*(y+2));

Print;

.sort

Time = 0.00 sec Generated terms = 12

F Terms in output = 12

Bytes used = 448

F =

(1 + x)

* (y + x)

* (2 + z)

* (2 + z)

* (4 + 2*y + 2*x + x*y);

id x = -y;

Print;

.sort

Time = 0.00 sec Generated terms = 12

F Terms in output = 8

Bytes used = 300

F =

(1 - y)

* (0)

* (2 + z)

* (2 + z)

* (4 - y^2);

UnFactorize F;

Print;

.end

Time = 0.00 sec Generated terms = 8

F Terms in output = 8

Bytes used = 300

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

unfactorize Bytes used = 84

Time = 0.00 sec Generated terms = 0

F Terms in output = 0

unfactorize Bytes used = 4

F = 0;

This example shows also that if during further processing a factor be-
comes zero, we still keep the expression and the other factors. If, on the
other hand, we unfactorize the expression, we end up with zero of course.

Factorization of $-expressions is yet another case. Here we do not have
the bracket system. Neither do we have the possibility to store the factors
as arguments. On the other hand, we are not limited by the maximum
size of terms.

#define MAX "5"

#define TERMS "6"

#define POW "3"

Symbols a1,...,a‘MAX’,j;

Off Statistics;

Format NoSpaces;

#do i = 1,‘MAX’

#$v‘i’ = sum_(j,1,‘TERMS’,random_(‘TERMS’)*\

<a1^random_(‘POW’)/a1>*...*<a‘MAX’^random_(‘POW’)/a‘MAX’>);

#enddo

#$V = <$v1>*...*<$v‘MAX’>;

.sort

#factdollar $V

#write <> "Factors in $V: ‘$V[0]’";

Factors in $V: 8

#do i = 1,‘$V[0]’

#write <> " Factor ‘i’: %$",$V[‘i’];

Factor 1: a3

#enddo

Factor 2: a3

Factor 3: 6*a3*a4*a5^2+5*a2*a4^2+a1*a2*a3*a5+a1^2*a3*a4^2*a5+4*a1^2*

a2*a4^2+a1^2*a2^2*a3*a4^2

Factor 4: 2*a3^2*a4^2*a5+2*a1*a5+2*a1^2*a3^2*a4^2+2*a1^2*a2^2*a5^2+4*

a1^2*a2^2*a3*a4^2*a5^2+a1^2*a2^2*a3^2*a4*a5^2

Factor 5: a2

Factor 6: 5*a2*a4+3*a2*a3^2*a4^2*a5+6*a1*a2*a5^2+5*a1*a2*a3^2*a4^2+6*

a1*a2^2*a3*a4^2+a1^2*a4^2*a5

Factor 7: 6*a2*a4^2*a5+4*a2*a3^2*a4*a5^2+4*a1*a3^2*a4^2+a1^2*a3+6*a1^

2*a3^2*a5^2+a1^2*a2*a5^2

Factor 8: 5*a2*a3*a4^2*a5+3*a1*a3*a4^2+2*a1*a2*a4^2*a5+a1^2+5*a1^2*a2^

2*a3*a4*a5+a1^2*a2^2*a3*a4*a5^2

.end

3.25 sec out of 3.25 sec

We refer to the factors as if they are array elements. The zero element
tells the number of factors.
Of course $-variables can be used in two ways: during compilation as
shown above, and during execution:

Symbols x,y,z;

CFunction f;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+z)*(x*y+4*z^2+3*y*z^4-7*x^2*y));

Print;

.sort

F=

f(4*y*z^3+3*y^2*z^5+4*x*z^3+4*x*y*z^2+3*x*y*z^5+x*y^2*z+3*x*y^2*

z^4+4*x^2*z^2+x^2*y*z+3*x^2*y*z^4+x^2*y^2-7*x^2*y^2*z+x^3*y-7*x^3

*y*z-7*x^3*y^2-7*x^4*y);

id f(x?$v) = 1;

FactDollar,$v;

do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];

$t = nterms_($v[$i]);

Print " There are %$ terms in factor %$",$t,$i;

enddo;

.end

Factor 1 in $v = z+x

There are 2 terms in factor 1

Factor 2 in $v = 4*z^2+3*y*z^4+x*y-7*x^2*y

There are 4 terms in factor 2

Factor 3 in $v = y+x

There are 2 terms in factor 3

Here we need an extra supporting facility: the do loop during execution.
Its variable is a $-variable.
Internally the factorization algorithms work only with symbols and num-
bers. Yet we may use other objects as well. Form will replace them
temporarily by an internal set of symbols, called the “extra symbols”.
Then, after factorization these are replaced back. Hence the following
example works properly.

Symbols x,y,z;

CFunction f,g;

Off Statistics;

Format nospaces;

Local F = f((x+y)*(x+g(z))*(x*y+4*z^2+3*g(y)*z^4-7*x^2*y));

Print;

.sort

F=

f(4*x*y*z^2+4*x^2*z^2+x^2*y^2+x^3*y-7*x^3*y^2-7*x^4*y+3*g(y)*x*y*

z^4+3*g(y)*x^2*z^4+3*g(y)*g(z)*y*z^4+3*g(y)*g(z)*x*z^4+4*g(z)*y*

z^2+4*g(z)*x*z^2+g(z)*x*y^2+g(z)*x^2*y-7*g(z)*x^2*y^2-7*g(z)*x^3*

y);

id f(x?$v) = 1;

FactDollar,$v;

do $i = 1,$v[0];

Print " Factor %$ in $v = %$",$i,$v[$i];

$t = nterms_($v[$i]);

Print " There are %$ terms in factor %$",$t,$i;

enddo;

.end

Factor 1 in $v = 4*z^2+x*y-7*x^2*y+3*g(y)*z^4

There are 4 terms in factor 1

Factor 2 in $v = y+x

There are 2 terms in factor 2

Factor 3 in $v = x+g(z)

There are 2 terms in factor 3

There are more things that can be said about the factorization, but the
talks is supposed to be finite in time.

Rational Polynomials

Another important thing that was missing, was the capability to deal
with rational polynomials. This has even led to the introduction of the
external channels to use other programs like FERMAT for this purpose.
It would have been nice to have FERMAT in the form of a library, like
zlib (compression) or the GMP (for multiprecision calculations), but that
was not to be. Now we have our own capabilities.

Symbols x,y,z,a,b;

CFunction rat;

Format Nospaces;

Local F = a*rat(x+1,y+1)+a*rat(x+z,y+z)+a*rat(y+z,y-z);

Print;

.sort

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 476

F=

rat(1+x,1+y)*a+rat(z+y,-z+y)*a+rat(z+x,z+y)*a;

PolyRatFun rat;

Print;

.end

Time = 0.00 sec Generated terms = 3

F Terms in output = 1

Bytes used = 584

F=

a*rat(2*x*y^2-x*y*z+x*y-x*z^2-x*z+y^3+3*y^2*z+2*y^2+3*y*z-z^2,y^3

+y^2-y*z^2-z^2);

Like many things in Form this is of course limited to the maximum
size of the terms. If this turns out to be a limitation, there are usually
other ways to attack the problem. In that case the numerators and
denominators are very big expressions and it is better to store them in
separate expressions or $-variables. These then can be used in the new
functions gcd , div , rem to obtain results.
The first application of the rational polynomials was to make a new
version of the Mincer library. This version works exact. This means
that it does not use expansions in ǫ. All ǫ dependence is put inside the
rational polynomial.

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^2/p1.p1/p2.p2/p3.p3/p4.p4/p5.p5/p6.p6/p7.p7/p8.p8;

#call integral(be,0)

Print +f +s;

.sort

F=

+GschemeConstants(0,0)*BasicT1Integral*rat(6*ep^3-3*ep^2,2*ep+1)

+GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(18*ep^2-15*ep+

3,2*ep^2+ep)

+GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-128*ep^2+96*

ep-16,6*ep^2+3*ep)

+GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0

)*rat(84*ep^2-49*ep+7,6*ep^2+3*ep)

;

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2*ep^-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

As is shown above, there are some constants, which are basic one loop
integrals with zero, one or two insertions and there is a two loop integral
of type T1 with one insertion. There is one more constant which is the
basic non-planar integral in three loops.
The first three integrals are known in terms of Γ-functions and can be
expanded as far as wanted.
The T1 integral can be expanded to any precision but that takes more and
more time and run eventually into the limitation that there are relations
between the Multiple Zeta Values and these are known only to a certain
weight. Enough precision is built in for any practical calculations.
The NO integral is more of a problem, but is known to sufficient precision
for even 4 loop calculations.
The above program shows that this exact treatment is quite good because
we do not have to worry about cancellations of powers of ǫ.

L F1 = GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(18*ep^2-15*ep+

3,2*ep^2+ep);

L F2 = GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-128*ep^2+96*

ep-16,6*ep^2+3*ep);

L F3 = GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0)*

rat(84*ep^2-49*ep+7,6*ep^2+3*ep);

L F4 = GschemeConstants(0,0)*BasicT1Integral*rat(6*ep^3-3*ep^2,2*ep+1);

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2*ep^-1*z3-3*z4+12*z3+46*ep*z5+18*ep*z4-32*ep*z3;

F1=

192+3*ep^-4-18*ep^-3+48*ep^-2-96*ep^-1-18*ep^-1*z3-27*z4+108*z3-

384*ep-126*ep*z5+162*ep*z4-288*ep*z3;

F2=

-1024/3-16/3*ep^-4+32*ep^-3-256/3*ep^-2+512/3*ep^-1+256/3*ep^-1*

z3+128*z4-512*z3+2048/3*ep+1024*ep*z5-768*ep*z4+4096/3*ep*z3;

F3=

448/3+7/3*ep^-4-14*ep^-3+112/3*ep^-2-224/3*ep^-1-154/3*ep^-1*z3-

77*z4+308*z3-896/3*ep-546*ep*z5+462*ep*z4-2464/3*ep*z3;

F4=

-18*ep^-1*z3-27*z4+108*z3-306*ep*z5+162*ep*z4-288*ep*z3;

As one can see, there are quite a few terms cancelling between the terms
with only one loop constants.

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^3*Q.p2^2/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4/p5.p5/p6.p6/p7.p7/p8.p8;

#call integral(be,0)

Print +f +s;

.sort

F=

+GschemeConstants(0,0)*BasicT1Integral*rat(162*ep^8+729*ep^7+1008

*ep^6+405*ep^5-60*ep^4-72*ep^3-12*ep^2,8*ep^4+44*ep^3+88*ep^2+76*

ep+24)

+GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(144*ep^9+960*

ep^8+2418*ep^7+3051*ep^6+1620*ep^5-450*ep^4-690*ep^3-99*ep^2+54*

ep+12,4*ep^7+34*ep^6+118*ep^5+214*ep^4+214*ep^3+112*ep^2+24*ep)

+GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(-288*ep^9-2640

*ep^8-7486*ep^7-9899*ep^6-5723*ep^5+821*ep^4+2179*ep^3+500*ep^2-

112*ep-32,6*ep^7+51*ep^6+177*ep^5+321*ep^4+321*ep^3+168*ep^2+36*

ep)

+GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0

)*rat(-1296*ep^10+16308*ep^9+47592*ep^8+43275*ep^7+2601*ep^6-

20189*ep^5-9321*ep^4+2300*ep^3+1490*ep^2-84*ep-56,96*ep^8+720*

ep^7+2088*ep^6+2844*ep^5+1584*ep^4-180*ep^3-528*ep^2-144*ep)

;

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme

Print +f;

.end

F=

-2903/1296-1/18*ep^-2+125/216*ep^-1-1/3*ep^-1*z3-1/2*z4-5/18*z3+

28541/7776*ep+23/3*ep*z5-5/12*ep*z4+467/108*ep*z3;

0.41 sec out of 0.44 sec

The “Mincer Exact” package has been added to the Form distribution.

New Functions

Form has obtained many new functions. We name them here. Some
names are selfevident:

Random RanPerm Div Rem

Gcd Inverse FirstTerm Prime

ExtEuclidean MakeRational NumFactors Content

ExtraSymbol

A number of these functions are designed for use in future packages, like
a package for Gröbner bases. Such bases can often be calculated faster
when calculus is over a prime number and in the end the results over
several prime number calculations are combined into a result modulus
the product of these numbers.

Making a decent Gröbner basis package is a major undertaking. Again
the better packages are not suitable for inclusion as a library and are
usually part of a commercial product. There is much heuristics involved
to take shortcuts and all of that is kept secret. This means that one
has to develop ones own heuristics. For this reason we have only been
experimenting a little bit with Gröbner bases.

#-

#include- groebner.h

Off Statistics;

ON HighFirst;

.global

Local Poly1 = x1^2 + x2*x3 - 2;

Local Poly2 = x1^2*x3 + x2^3 - 3;

Local Poly3 = x1*x2 + x3^2 - 5;

#$n = 3;

#write <> "The input polynomials are:"

Print +f;

.sort

#call groebner(Poly,n)

#write <> "The Groebner basis is:"

Print +f;

.end

The above shows what this should look like from the users perspective.
The result of this program is:

#-

The input polynomials are:

Poly1 =

x1^2 + x2*x3 - 2;

Poly2 =

x1^2*x3 + x2^3 - 3;

Poly3 =

x1*x2 + x3^2 - 5;

The Groebner basis is:

Poly1 =

4093136817253*x1 - 999056107380*x3^9 + 3162784725684*x3^8 +

15617604960159*x3^7 - 52374677099676*x3^6 - 78004955176188*x3^5 +

303405612909504*x3^4 + 117232980911431*x3^3 - 685255923260685*x3^2 -

3397254300818*x3 + 498469518662424;

Poly2 =

30*x3^10 - 9*x3^9 - 570*x3^8 + 222*x3^7 + 4173*x3^6 - 1782*x3^5 - 14569*

x3^4 + 5523*x3^3 + 24357*x3^2 - 5721*x3 - 15553;

Poly3 =

372103347023*x2 + 159558175470*x3^9 - 307637902881*x3^8 - 2539999354128*

x3^7 + 5261771049639*x3^6 + 13722480161265*x3^5 - 31064912209032*x3^4 -

27045529790992*x3^3 + 69969321110925*x3^2 + 14416898137155*x3 -

48858412479378;

0.10 sec out of 0.11 sec

One can see here that this can run out of hand rather quickly. Of course
the secret is in what is in the library groebner.h. It uses a large number
of the new functions.

This is for example a routine that defines an S-polynomial:

#procedure Spoly(A,B,S);

*

* Procedure defines the S-polynomial of the two polynomials A and B.

* We work with $’s for the intermediate variables because that is faster

* and that way we have to compute the gcd only once and do the divisions

* only once.

*

#$firstA = firstterm_(‘A’);

#$firstB = firstterm_(‘B’);

#$gcdfirst = gcd_($firstA, $firstB);

#if (isnumerical($gcdfirst))

Local ‘S’ = 0;

#else

#$nfirstA = $firstA/$gcdfirst;

#$nfirstB = $firstB/$gcdfirst;

Skip;

Local ‘S’ = ‘A’*$nfirstB - ‘B’*$nfirstA;

#endif

.sort

#endprocedure

Note the use of the functions firstterm and gcd . Also the new option
isnumerical in the preprocessor if statement is being used. Another
routine:

#procedure MakeInteger(IN,OUT)

*

* Defines the polynomial ‘OUT’ as a multiple of ‘IN’ so that all its

* coefficients are integer.

*

#$MkI = content_(‘IN’);

#inside $MkI

$cMkI = coeff_;

#endinside

Skip;

Drop ‘IN’;

Local ‘OUT’ = ‘IN’/(‘$cMkI’);

.sort

*

#endprocedure

Here we use the function content to eventually obtain the GCD of the
numerators and the LCM of the denominators.
Now we hope for volunteers to make a good package.

Miscellaneous

The parallel versions TForm and ParForm are both fully functional
now. Till about a year ago ParForm was still missing much of the
functionality and was also not very portable. This has all been rectified.
It is part of the open source distribution. It does however need a proper
MPI installation.

One of the complaints in the past was that .sav files of different executa-
bles of Form were incompatible. This meant that a .sav file generated
on one computer might not be usable on another. Also new versions
would often need extra variables in the .sav file and hence the old files
would be useless. Starting with version 4.0 we have made an attempt
to solve these problems. The files should now be uniform, even between
32-bits and 64-bits versions. In addition we have left much spare space in
the headers to allow for future extensions that would otherwise invalidate
old files.
Of course, some files cannot be carried from a 64-bits computer to a 32-
bits computer. If we use x

123456, the power is more than the maximum
power allowed for symbols on 32-bits systems. Similarly one can exceed
the total number of different objects used in all expressions together. But
those are rather natural limitations and they would be very rare.

Checkpoints are selected points in a Form program from which the
program can be restarted. One can define many such checkpoints but
the program will remember only the last one it has encountered. This
facility allows the user to restart the program when external causes have
halted execution, like a power outage. The user has to define these
checkpoints. It is not done automatically.

There is now a forum for Form users to communicate with each other.
To post on the forum one needs to register. This involves answering an
easy question and then waiting till one of the moderators approves of
the registration. This procedure is needed because of SPAM attacks and
organizations having automatic programs for trying to register on forums
like this.
The forum is the proper way to report bugs, to ask questions about in-
stallation and versions, or to ask help with certain features or techniques.

For all features in Form, TForm and ParForm holds that we have
tried our best to make them running flawlessly on systems that are avail-
able to us. Yet it is not excluded that on other systems strange things
happen. This may be due to errors in the other systems, unanticipated
behaviour, or just insufficiently careful programming on our side. When-
ever such a thing occurs we ask the user to report the problems by means
of the forum.

What brings the future?

The one line answer to this question:

Hopefully something spectacular.

Currently we (mainly Jan) are trying to make a system for rewriting
outputs for numerical programs in a way that they take as few operations
as possible. For this we will be applying a completely new method.
Hopefully there will be some results in the autumn. Already we have
a first order program which is more classical and gives results similar
to Haggies and the external code that was made for the Grace system.
This is not available yet because it needs extra supporting code and most
likely it will change. But I have here one example:

Symbols a1,...,a5,j;

Off Statistics;

Local F = sum_(j,1,10,random_(4)*a1^(random_(4)-1)*a2^(random_(4)-1)

*a3^(random_(4)-1)*a4^(random_(4)-1)*a5^(random_(4)-1));

Print;

.sort

F =

3*a4^2*a5 + 4*a1^2*a2*a3*a5^2 + 4*a1^2*a2*a3^2*a5 + 2*a1^2*a2*a3^3*a4^2*

a5 + 2*a1^2*a2^2*a4*a5 + a1^2*a2^2*a3^3*a5^2 + 3*a1^2*a2^3*a3*a4^3*a5^3

+ 4*a1^3*a2^2*a3*a4^3*a5 + a1^3*a2^3*a3*a4^3*a5 + a1^3*a2^3*a3^2*a4*

a5^2;

ExtraSymbols vector A;

Format O1;

Format Fortran;

#write <> "%E",F;

A(1)=a3*a4**3

A(2)=a1**3

A(3)=a2*A(1)*A(2)

A(4)=4*A(1)*a1

A(5)=2*a4

A(4)=A(4) + A(5)

A(5)=a1**2

A(4)=A(4)*A(5)

A(3)=A(3) + A(4)

A(3)=A(3)*a2

A(4)=a4**2

A(6)=2*A(4)*a3

A(6)=A(6) + 4

A(7)=a3**2

A(6)=A(5)*A(6)*A(7)

A(3)=A(3) + A(6)

A(3)=A(3)*a2

A(1)=3*a5*a2**3*A(1)*A(5)

A(2)=a2*A(2)*a4*A(7)

A(6)=a3**3*A(5)

A(2)=A(2) + A(6)

A(2)=A(2)*a2

A(5)=4*a3*A(5)

A(2)=A(2) + A(5)

A(2)=A(2)*a2

A(1)=A(1) + A(2)

A(1)=A(1)*a5

A(2)=3*A(4)

A(1)=A(1) + A(3) + A(2)

F=A(1)*a5

.end

0.00 sec out of 0.00 sec

Of course this is not optimal. It is just a first order approximation.

