HIGGS MASS PREDICTIONS IN THE CP-VIOLATING HIGH-SCALE NMSSM

Christoph Borschensky

(e-mail: christoph.borschensky@kit.edu)

Institut für Theoretische Physik 17635 **Released today!**

arXiv:2406.17635

Together with:

Thi Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, Heidi Rzehak (NMSSMCALC collaboration)

KUTS Workshop, DESY Hamburg, 26 June 2024

2

Summary

Outline

1 Next-to-Minimal Supersymmetric Standard Model

Calculating M_h in the high-scale NMSSM Matching conditions: quartic-coupling matching, pole-mass matching Implementation in NMSSMCALC Uncertainties

3 Numerical analysis Comparison with previous works The case of a light singlet

Supersymmetry – out of reach?

Supersymmetry – out of reach?

Numerical analysis

Summary

The Next-to-Minimal Supersymmetric Standard Model

Summary

The Next-to-Minimal Supersymmetric Standard Model

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

• Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)

The Next-to-Minimal Supersymmetric Standard Model

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

- Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)
- $\blacktriangleright \ \mathbb{Z}_3$ symmetry forbids linear and bilinear terms
- \Rightarrow Solves the μ problem (no dimensionful couplings in the superpotential)

The Next-to-Minimal Supersymmetric Standard Model

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

- Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)
- $\blacktriangleright \ \mathbb{Z}_3$ symmetry forbids linear and bilinear terms
- \Rightarrow Solves the μ problem (no dimensionful couplings in the superpotential)
- μ parameter is generated dynamically:

$$\mu_{\rm eff} = \frac{e^{i\boldsymbol{\varphi}_{\rm S}} v_{\rm S} \lambda}{\sqrt{2}}$$

The Next-to-Minimal Supersymmetric Standard Model

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\text{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

• Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)

Higgs sector

Higgs mass calculations in the NMSSM

Constraining the NMSSM parameter space with the m_h^{SM} measurement

Fixed-order status:

- Full 1L, 2L, in different renormalisation schemes (DR, mixed OS-DR) [Ellwanger et al. '93, '05][Elliot et al. '93][Pandita '93][King, White '95][Degrassi, Slavich '10][Staub et al. '10][Drechsel et al. '17][Ham et al. '01-'07][Funakubo, Tao '04][Cheung et al. '10][Goodsell, Staub '17][Domingo et al. '17][Goodsell et al. '15][Ender et al. '12][Graf et al. '12][Mühlleitner et al. '14][Dao et al. '19-'21]
- Tools: FlexibleSUSY [Athron et al.], NMSSMCALC [Baglio et al.], NMSSMTools [Ellwanger et al.], SOFTSUSY [Allanach et al.], SARAH/Spheno [Porod, Staub]

Status of effective field theory (EFT) approach:

- ▶ Pole-mass matching in FlexibleEFTHiggs [Athron et al. '17], SARAH/Spheno [Staub, Porod '17]
- Automated full 1L EFT matching in SARAH [Gabelmann et al. '18-'19]
- ► Full 1L + (NMSSM-specific) 2L EFT matching in the real NMSSM [Bagnaschi, Goodsell, Slavich '22]

a t

6

Higgs mass calculations at higher orders

Fixed-order calculations for the Higgs mass:

- Full perturbative series truncated at fixed order
- Reliable for not too high SUSY masses
 Dominant corrections from top/stop sector, e.g. at 1-loop: ΔM²_h ~ m⁴_t ln m²_t/m²_t

Higgs mass calculations at higher orders

Fixed-order calculations for the Higgs mass:

- Full perturbative series truncated at fixed order Reliable for not too high SUSY masses Dominant corrections from top/stop sector, e.g. at 1-loop: $\Delta M_h^2 \sim \frac{m_t^4}{v^2} \ln \frac{m_t^2}{m_t^2}$

If SUSY masses (e.g. stops) are heavy: large separation of scales

EW scale: $m_t \sim v \ll$ SUSY scale: $m_{\tilde{t}} \sim M_{SUSY}$

$$n \frac{M_{SUSY}^2}{v^2} \gg 1$$

Large logs $\ln \frac{M_{SUSY}^2}{v^2}$ from higher orders are relevant and **need to be resummed**!

Summary

Effective field theory approach to calculating M_h

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

$$\lambda^{\text{SM}}(Q_{\text{match}}) \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q_{\text{match}}) \stackrel{\boldsymbol{\mu}_{R}}{\bullet} Q_{\text{match}} \sim M_{\text{SUSY}}$$

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory calculations:

▶ Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}

Summary

Effective field theory approach to calculating M_h

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory calculations:

- ▶ Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}
- ▶ RGE running from high down to EFT scale: resummation of large logarithms

$$\ln(M_{SUSY}^2/v^2) = \ln(\mu_R^2/v^2) + \ln(M_{SUSY}^2/\mu_R^2)$$
resummed by RGEs +
$$\ln(M_{SUSY}^2/\mu_R^2)$$
part of matching condition at $\mu_R \sim Q_{match} \sim M_{SUSY}$

Summary

Effective field theory approach to calculating M_h

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory calculations:

- ▶ Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}
- RGE running from high down to EFT scale: resummation of large logarithms

$$\ln(M_{SUSY}^2/v^2) = \underbrace{\ln(\mu_R^2/v^2)}_{\text{resummed by RGEs}} + \underbrace{\ln(M_{SUSY}^2/\mu_R^2)}_{\text{part of matching conditions}}$$

→ Non-log terms $O(v^2/M_{SUSY}^2)$ not included: EFT only valid for $v/M_{SUSY} \ll 1!$

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^{4}}_{\lambda^{\text{SM}}(Q) \leftrightarrow \lambda^{\text{NMSSM}}(Q), Y^{\text{SM}}_{i}(Q) \leftrightarrow Y^{\text{NMSSM}}_{i}(Q), g^{\text{SM}}_{j}(Q) \leftrightarrow g^{\text{NMSSM}}_{j}(Q), \dots$

Summary

Matching the NMSSM parameters to the SM

8

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}_{\lambda^{\text{SM}}(Q) \leftrightarrow \lambda^{\text{NMSSM}}(Q), Y_i^{\text{SM}}(Q) \leftrightarrow Y_i^{\text{NMSSM}}(Q), g_j^{\text{SM}}(Q) \leftrightarrow g_j^{\text{NMSSM}}(Q), \dots$

Quartic-coupling matching

" $\lambda^{\text{SM}} = \lambda^{\text{NMSSM}}$ "

- Matching of 4-point functions
- Evaluate directly in $\mathbf{v} \rightarrow 0$ limit
- → Analytical expressions

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^{4}}_{\lambda^{\text{SM}}(Q) \leftrightarrow \lambda^{\text{NMSSM}}(Q), Y^{\text{SM}}_{i}(Q) \leftrightarrow Y^{\text{NMSSM}}_{i}(Q), g^{\text{SM}}_{j}(Q) \leftrightarrow g^{\text{NMSSM}}_{j}(Q), \dots$

Quartic-coupling matching	Pole-mass matching
" $\lambda^{SM} = \lambda^{NMSSM}$ "	$"M_h^{\rm SM} = M_h^{\rm NMSSM}"$
Matching of 4-point functions	 Matching of 2-point functions
• Evaluate directly in $v \rightarrow 0$ limit	 Partial O(v² / M²_{SUSY}) terms included
→ Analytical expressions	\rightarrow Numerical expressions

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^{4}}_{\lambda^{\text{SM}}(Q) \leftrightarrow \lambda^{\text{NMSSM}}(Q), Y_{i}^{\text{SM}}(Q) \leftrightarrow Y_{i}^{\text{NMSSM}}(Q), g_{j}^{\text{SM}}(Q) \leftrightarrow g_{j}^{\text{NMSSM}}(Q), \dots$

Quartic-coupling matching	Pole-mass matching
" $\lambda^{SM} = \lambda^{NMSSM}$ "	$"M_h^{\rm SM} = M_h^{\rm NMSSM}"$
 Matching of 4-point functions 	 Matching of 2-point functions
• Evaluate directly in $v \rightarrow 0$ limit	 Partial O(v²/M²_{SUSY}) terms included
\rightarrow Analytical expressions	\rightarrow Numerical expressions

 \Rightarrow Compare both approaches, estimate size of $O(v^2/M_{SUSY}^2)$ terms

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^{4}}_{\lambda^{\text{SM}}(Q) \leftrightarrow \lambda^{\text{NMSSM}}(Q), \quad Y_{i}^{\text{SM}}(Q) \leftrightarrow Y_{i}^{\text{NMSSM}}(Q), \quad g_{j}^{\text{SM}}(Q) \leftrightarrow g_{j}^{\text{NMSSM}}(Q), \quad \dots$

Yukawa couplings only appear starting from one-loop corrections

 \Rightarrow For one-loop matching of λ^{SM} , match Yukawa couplings at tree level, e.g.:

$$Y_t^{\text{NMSSM},\overline{\text{DR}}} = Y_t^{\text{SM},\overline{\text{MS}}} / \sin\beta$$

VSW

Matching the NMSSM parameters to the SM

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

$$\xrightarrow{\sim} \lambda^{\text{SM}}[H]^{4}}{\lambda^{\text{SM}}(Q)} \leftrightarrow \lambda^{\text{NMSSM}}(Q), \quad Y_{i}^{\text{SM}}(Q) \leftrightarrow Y_{i}^{\text{NMSSM}}(Q), \quad g_{j}^{\text{SM}}(Q) \leftrightarrow g_{j}^{\text{NMSSM}}(Q), \quad \dots$$

Gauge couplings already appear at tree level

⇒ For one-loop matching of λ^{SM} , match gauge couplings at one loop:

$$g_i^{\text{NMSSM},\overline{\text{DR}}} = g_i^{\text{SM},\overline{\text{MS}}} + \delta g_i^{\text{reg}} + \delta g_i^{\text{thr}}$$

- ► δg_i^{reg} : one-loop regularisation scheme shifts ($\overline{\text{DR}} \rightarrow \overline{\text{MS}}$)
- δg_i^{thr} : one-loop gauge threshold corrections

9

Quartic-coupling matching

Evaluated in limit of unbroken EW symmetry (i.e. $v_u, v_d \rightarrow 0$) and vanishing ext. momentum, but keeping tan β = const., $v_s \neq 0$:

Note: $\Delta \lambda_h^{MSSM,2l}$: 2L QCD and mixed QCD-EW corrections in the limit of the CP-conserving MSSM (not sensitive to the CPV phases in $\lambda_h^{MMSSM,tree}$ and $\Delta \lambda_h^{MMSSM,1l}$)

9

Quartic-coupling matching

Evaluated in limit of unbroken EW symmetry (i.e. $v_u, v_d \rightarrow 0$) and vanishing ext. momentum, but keeping tan β = const., $v_s \neq 0$:

Note: $\Delta \lambda_h^{MSSM,2l}$: 2L QCD and mixed QCD-EW corrections in the limit of the CP-conserving MSSM (not sensitive to the CPV phases in $\lambda_h^{MMSSM,tree}$ and $\Delta \lambda_h^{MMSSM,1l}$)

Quartic-coupling matching: tree-level contribution

 $\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},1l} + \Delta\lambda_h^{\text{MSSM},2l}$

Summary

Quartic-coupling matching: tree-level contribution

$$\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},11} + \Delta\lambda_h^{\text{MSSM},21}$$

Numerical analysis

Summary

Quartic-coupling matching: tree-level contribution

$$\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},11} + \Delta\lambda_h^{\text{MSSM},21}$$

Numerical analysis

Summary

Quartic-coupling matching: tree-level contribution

$$\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},11} + \Delta\lambda_h^{\text{MSSM},21}$$

Summary

Quartic-coupling matching: tree-level contribution

$$\lambda_{h}^{\text{NMSSM,MS}}(Q_{\text{match}}) = \lambda_{h}^{\text{NMSSM,tree}} + \Delta\lambda_{h}^{\text{NMSSM,1l}} + \Delta\lambda_{h}^{\text{MSSM,2l}}$$

$$\lambda_{h}^{\text{NMSSM,tree}} = \frac{1}{8}(g_{1}^{2} + g_{2}^{2})\cos^{2}2\beta + \frac{1}{4}|\lambda|^{2}\sin^{2}2\beta}{}_{\text{MSSM-like terms}} + \frac{1}{48}|\lambda|^{2}\sin^{2}\beta} \left(3|\kappa|^{2}M_{H^{\pm}}^{2}(1 - \cos 4\beta) + \frac{1}{48}|\kappa|^{2}M_{S}^{2}(3M_{S}^{2} + M_{A_{S}}^{2})} \left(3|\kappa|^{2}M_{H^{\pm}}^{2}(1 - \cos 4\beta) + \frac{1}{48}|\kappa|^{2}M_{S}^{2}(3M_{S}^{2} + M_{A_{S}}^{2}) \left(|\kappa||\lambda||\cos \varphi_{Y}\sin 2\beta - 2|\lambda|^{2}\right)\right)^{2}$$

Next-to-Minimal Supersymmetric Standard Model

Calculating M_h in the high-scale NMSSM

Numerical analysis

Summary

Quartic-coupling matching: one-loop contribution

$$\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},11} + \Delta\lambda_h^{\text{MSSM},21}$$

with

$$\Delta \lambda_{h}^{\text{NMSSM,1l}} = \Delta \lambda_{\Box} + \Delta \lambda_{\Delta} + \Delta \lambda_{\text{SE}} + \Delta \lambda_{\text{CT}} + \Delta \lambda_{\text{reg}} + \Delta \lambda_{\text{gauge-thr}}$$

►
$$\overline{\text{DR}} \rightarrow \overline{\text{MS}}$$
 shifts: $\Delta\lambda_{\text{reg}} = \frac{1}{64\pi^2} \left[\frac{g_2^4}{3} \cos^2 2\beta - \frac{1}{2} \left(g_1^4 + 2g_1^2 g_2^2 + 3g_2^4 \right) \right]$
► 1L gauge thresholds: $\Delta\lambda_{\text{gauge-thr}} = \frac{1}{4} \left(g_1 \delta g_1^{\text{thr}} + g_2 \delta g_2^{\text{thr}} \right) \cos^2 2\beta + \mathcal{O} \left((\delta g_i)^2 \right)$

(same as in the MSSM)

Next-to-Minimal Supersymmetric Standard Model

Calculating M_h in the high-scale NMSSM

Numerical analysis

Summary

Quartic-coupling matching: one-loop contribution

$$\lambda^{\text{NMSSM},\overline{\text{MS}}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM},\text{tree}} + \Delta\lambda_h^{\text{NMSSM},11} + \Delta\lambda_h^{\text{MSSM},21}$$

with

• box contributions: $\Delta \lambda_{\Box}$

• vertex contributions: $\Delta \lambda_{\triangle} = -\frac{1}{2} \frac{g_{hhs}}{M_s^2} \Delta g_{hhs} - \frac{1}{2} \frac{g_{hhA_s}}{M_A^2} \Delta g_{hhA_s}$

1L amplitudes from SARAH with SM part already subtracted [Gabelmann et al. '18]

► self-energy contributions:
$$\Delta\lambda_{SE} = \frac{1}{2} \left(\frac{g_{hhS}}{M_S^2}\right)^2 \Sigma_{SS}(0) + \frac{1}{2} \left(\frac{g_{hhA_s}}{M_{A_s}^2}\right)^2 \Sigma_{A_sA_s}(0) + \frac{g_{hhA_s}g_{hhS}}{M_{A_s}^2 M_S^2} \Sigma_{SA_s}(0)$$

Next-to-Minimal Supersymmetric Standard Model

Calculating M_h in the high-scale NMSSM

Numerical analysis

Summary

Quartic-coupling matching: one-loop contribution

with

$$\Delta\lambda_{h}^{\text{NMSSM,\overline{MS}}}(Q_{\text{match}}) = \lambda_{h}^{\text{NMSSM,tree}} + \Delta\lambda_{h}^{\text{NMSSM,11}} + \Delta\lambda_{h}^{\text{MSSM,21}}$$
with

$$\Delta\lambda_{h}^{\text{NMSSM,11}} = \Delta\lambda_{\Box} + \Delta\lambda_{\Delta} + \Delta\lambda_{SE} + \Delta\lambda_{CT} + \Delta\lambda_{reg} + \Delta\lambda_{gauge-thr}$$

$$\delta^{(1)}Z_{h} = -\frac{d\Sigma_{hh}}{dp^{2}}\Big|_{p^{2}=0}$$

$$\Delta\lambda_{CT} = 2\lambda_{h}^{\text{NMSSM,tree}}\delta^{(1)}Z_{h} - \frac{\delta^{(1)}t_{h_{s}}}{2v_{s}}\left(\frac{g_{hhs}^{2}}{M_{s}^{2}} + \frac{g_{hhs}^{2}}{M_{s}^{2}}\right) + \frac{\delta^{(1)}t_{a_{s}}}{2v_{s}}\left(3\frac{g_{hha_{s}}^{2}}{M_{a_{s}}^{2}} \tan \varphi_{\omega} - 2\frac{g_{hha_{s}}g_{hhs}}{M_{a_{s}}^{2}M_{s}^{2}} - \frac{g_{hhs}^{2}}{M_{s}^{2}} \tan \varphi_{\omega}\right)$$

$$+ \delta^{(1)} \text{Im} A_{\lambda}\left(\frac{g_{hha_{s}}}{M_{a_{s}}^{2}}\frac{\partial g_{hha_{s}}}{\partial \text{Im} A_{\lambda}} + \frac{g_{hhs}}{M_{s}^{2}}\frac{\partial g_{hhs}}{\partial \text{Im} A_{\lambda}}\right)\Big|_{\text{min}}$$
evaluated at the minimum of the potential

Next-to-Minimal Supersymmetric Standard Model

Calculating M_h in the high-scale NMSSM

Numerical analysis

Summary

Quartic-coupling matching: one-loop contribution

Intermezzo: treatment of tadpoles and counterterms

Work in \overline{DR} or \overline{MS} scheme \rightarrow no finite counterterm (CT) contributions Exception: tadpoles are calculated in a "tadpole-on-shell scheme":

$$- - \frac{t_i^{(1)}}{2} - \frac{1}{2} + - \frac{\delta^{(1)}t_i}{2} - \otimes = 0$$

such that $\delta^{(1)}t_i = -t_i^{(1)}$

Summary

Intermezzo: treatment of tadpoles and counterterms

Work in $\overline{\text{DR}}$ or $\overline{\text{MS}}$ scheme \rightarrow no finite counterterm (CT) contributions Exception: tadpoles are calculated in a "tadpole-on-shell scheme":

such that $\delta^{(1)}t_i = -t_i^{(1)}$

- ► Minimum of V_H does not move: tree-level VEV corresponds to the true VEV
- ► No explicit tadpoles in loop diagrams (exactly cancelled by the tadpole CTs)
- However: tadpole CTs $\delta^{(1)}t_i$ appearing in mass and vertex CTs

Intermezzo: tadpole equation for a_d

Tree-level tadpole equation for the a_d component (CP-odd doublet):

$$\frac{t_{a_d}}{v\sin\beta} = \frac{1}{2} |\lambda| v_s \left(-|\kappa| v_s \sin\varphi_y + \sqrt{2} \operatorname{Im} A_\lambda \cos(\varphi_\omega - \varphi_y) + \sqrt{2} \operatorname{Re} A_\lambda \sin(\varphi_\omega - \varphi_y) \right)$$

$$\Rightarrow \operatorname{Im} A_\lambda = \frac{\sqrt{2}}{|\lambda| v_s \cos(\varphi_\omega - \varphi_y) \sin\beta} \frac{t_{a_d}}{v} + \frac{|\kappa| v_s}{\sqrt{2}} \frac{\sin\varphi_y}{\cos(\varphi_\omega - \varphi_y)} - \operatorname{Re} A_\lambda \tan(\varphi_\omega - \varphi_y)$$

with the tree-level tadpole $t_{a_d} = t_{a_d}^{(0)} = 0$ at the minimum.

Intermezzo: tadpole equation for a_d

Tree-level tadpole equation for the a_d component (CP-odd doublet):

$$\frac{t_{a_d}}{v\sin\beta} = \frac{1}{2} |\lambda| v_{\rm S} \left(-|\kappa| v_{\rm S} \sin\varphi_{\rm y} + \sqrt{2} \operatorname{Im} A_{\lambda} \cos(\varphi_{\omega} - \varphi_{\rm y}) + \sqrt{2} \operatorname{Re} A_{\lambda} \sin(\varphi_{\omega} - \varphi_{\rm y}) \right)$$

$$\Rightarrow \operatorname{Im} A_{\lambda} = \frac{\sqrt{2}}{|\lambda| v_{\rm S} \cos(\varphi_{\omega} - \varphi_{\rm y}) \sin\beta} \frac{t_{a_d}}{v} + \frac{|\kappa| v_{\rm S}}{\sqrt{2}} \frac{\sin\varphi_{\rm y}}{\cos(\varphi_{\omega} - \varphi_{\rm y})} - \operatorname{Re} A_{\lambda} \tan(\varphi_{\omega} - \varphi_{\rm y})$$

with the tree-level tadpole $t_{a_d} = t_{a_d}^{(0)} = 0$ at the minimum.

→ Finite CT contribution from $t_{a_d} \rightarrow t_{a_d}^{(0)} + \delta^{(1)} t_{a_d}$ (all other pars. renormalised DR):

$$\delta^{(1)} \operatorname{Im} A_{\lambda} = \frac{\sqrt{2}}{|\lambda| v_{S} \cos(\varphi_{\omega} - \varphi_{y}) \sin \beta} \frac{\delta^{(1)} t_{a_{d}}}{v} \longrightarrow$$

Intermezzo: tadpole equation for a_d

Tree-level tadpole equation for the a_d component (CP-odd doublet):

$$\frac{t_{a_d}}{v\sin\beta} = \frac{1}{2} |\lambda| v_S \left(-|\kappa| v_S \sin\varphi_y + \sqrt{2} \operatorname{Im} A_\lambda \cos(\varphi_\omega - \varphi_y) + \sqrt{2} \operatorname{Re} A_\lambda \sin(\varphi_\omega - \varphi_y) \right)$$

$$\Rightarrow \operatorname{Im} A_\lambda = \frac{\sqrt{2}}{|\lambda| v_S \cos(\varphi_\omega - \varphi_y) \sin\beta} \frac{t_{a_d}}{v} + \frac{|\kappa| v_S}{\sqrt{2}} \frac{\sin\varphi_y}{\cos(\varphi_\omega - \varphi_y)} - \operatorname{Re} A_\lambda \tan(\varphi_\omega - \varphi_y)$$

with the tree-level tadpole $t_{a_d} = t_{a_d}^{(0)} = 0$ at the minimum.

→ Finite CT contribution from $t_{a_d} \rightarrow t_{a_d}^{(0)} + \delta^{(1)} t_{a_d}$ (all other pars. renormalised DR):

 $δ⁽¹⁾ Non-vanishing contribution from <math>δ⁽¹⁾t_{a_d}/v$ for $v \to 0!$

Demand that the pole masses M_h^{χ} (X = SM, NMSSM) of the SM-like Higgs states are the same:

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2$$

e.g. [Athron et al. '16], [Braathen et al. '18]

14

with $(M_h^X)^2 = (m_h^X)^2 - \text{Re}\,\hat{\Sigma}_h^X (p^2 = (M_h^X)^2)$

- m_h^{χ} : SM(-like) $\overline{\text{MS}}$ ($\overline{\text{DR}}$) Higgs mass in the SM (NMSSM)
- $\hat{\Sigma}_{h}^{X}$: \overline{MS} (\overline{DR}) renormalised self energies in the SM (NMSSM)

Demand that the pole masses M_h^{χ} (X = SM, NMSSM) of the SM-like Higgs states are the same:

 $(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2$

e.g. [Athron et al. '16], [Braathen et al. '18]

14

with $(M_h^{\chi})^2 = (m_h^{\chi})^2 - \text{Re}\,\hat{\Sigma}_h^{\chi}(p^2 = (m_h^{\chi})^2)$ (first iteration, expanded to 1L)

- m_h^{χ} : SM(-like) $\overline{\text{MS}}$ ($\overline{\text{DR}}$) Higgs mass in the SM (NMSSM)
- $\hat{\Sigma}_{h}^{X}$: \overline{MS} (\overline{DR}) renormalised self energies in the SM (NMSSM)

Demand that the pole masses M_h^X (X = SM, NMSSM) of the SM-like Higgs states are the same:

 $(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2$

e.g. [Athron et al. '16], [Braathen et al. '18]

with $(M_h^{\chi})^2 = (m_h^{\chi})^2 - \text{Re}\,\hat{\Sigma}_h^{\chi}(p^2 = (m_h^{\chi})^2)$ (first iteration, expanded to 1L)

- m_h^{χ} : SM(-like) $\overline{\text{MS}}$ ($\overline{\text{DR}}$) Higgs mass in the SM (NMSSM)
- $\hat{\Sigma}_{h}^{X}$: \overline{MS} (\overline{DR}) renormalised self energies in the SM (NMSSM)

Expansion of self energy around small external momenta:

 $\operatorname{Re} \hat{\Sigma}_h^{\boldsymbol{X}} \big((\boldsymbol{m}_h^{\boldsymbol{X}})^2 \big) = \hat{\Sigma}_h^{\boldsymbol{X}}(0) + (\boldsymbol{m}_h^{\boldsymbol{X}})^2 \, \hat{\Sigma}_h^{\boldsymbol{X}'}(0) + \mathcal{O} \big((\boldsymbol{m}_h^{\boldsymbol{X}})^4 \big)$

Demand that the pole masses M_h^X (X = SM, NMSSM) of the SM-like Higgs states are the same:

 $(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2$

e.g. [Athron et al. '16], [Braathen et al. '18]

14

with $(M_h^{\chi})^2 = (m_h^{\chi})^2 - \text{Re}\,\hat{\Sigma}_h^{\chi}(p^2 = (m_h^{\chi})^2)$ (first iteration, expanded to 1L)

- m_h^{χ} : SM(-like) $\overline{\text{MS}}$ ($\overline{\text{DR}}$) Higgs mass in the SM (NMSSM)
- $\hat{\Sigma}_{h}^{X}$: \overline{MS} (\overline{DR}) renormalised self energies in the SM (NMSSM)

Expansion of self energy around small external momenta:

$$\operatorname{Re} \widehat{\Sigma}_h^{\boldsymbol{X}} \big((\boldsymbol{m}_h^{\boldsymbol{X}})^2 \big) = \widehat{\Sigma}_h^{\boldsymbol{X}} (0) + (\boldsymbol{m}_h^{\boldsymbol{X}})^2 \, \widehat{\Sigma}_h^{\boldsymbol{X}'} (0) + \mathcal{O} \big((\boldsymbol{m}_h^{\boldsymbol{X}})^4 \big)$$

Gauge thresholds at one loop:

$$\begin{pmatrix} m_h^{\text{NMSSM}} \end{pmatrix}^2 \equiv \begin{pmatrix} m_h^{\text{NMSSM}}(g_i^{\text{NMSSM},\overline{\text{DR}}} \to g_i^{\text{SM},\overline{\text{MS}}} + \delta g_i) \end{pmatrix}^2$$
$$= \begin{pmatrix} m_h^{\text{NMSSM}}(g_i^{\text{SM},\overline{\text{MS}}}) \end{pmatrix}^2 + \frac{\delta^{\text{gauge}}m_h^2}{\delta^{\text{gauge}}m_h^2} + \mathcal{O}((\delta g_i)^2)$$

Summary

Pole-mass matching: tree-level contribution

At tree level, pole masses = tree-level masses:

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \Rightarrow (m_h^{\text{SM}})^2 \stackrel{!}{=} (m_h^{\text{NMSSM}})^2$$

Use $\overline{\text{MS}}$ relation $(m_h^{\text{SM}})^2 = 2(v^{\text{SM}})^2 \lambda_h^{\text{SM}}$ and solve for λ_h^{SM} :

$$\lambda_h^{\rm SM} = \frac{(m_h^{\rm NMSSM})^2}{2(v^{\rm NMSSM})^2}$$

where $v^{\text{NMSSM}} = v^{\text{SM}}$ and $\delta g_i = 0$ (tree-level matching of the VEV and the g_i)

15

Summary

Pole-mass matching: tree-level contribution

At tree level, pole masses = tree-level masses:

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \Rightarrow (m_h^{\text{SM}})^2 \stackrel{!}{=} (m_h^{\text{NMSSM}})^2$$

Use $\overline{\text{MS}}$ relation $(m_h^{\text{SM}})^2 = 2(v^{\text{SM}})^2 \lambda_h^{\text{SM}}$ and solve for λ_h^{SM} :

$$\lambda_h^{\rm SM} = \frac{(m_h^{\rm NMSSM})^2}{2(v^{\rm NMSSM})^2}$$

where $v^{\text{NMSSM}} = v^{\text{SM}}$ and $\delta g_i = 0$ (tree-level matching of the VEV and the g_i)

Analytical diagonalisation of tree-level mass matrix & expansion in v/M_{SUSY} : obtained same expression as for tree-level quartic-coupling matching!

16

Pole-mass matching: one-loop contribution

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \implies (m_h^{\text{SM}})^2 - \text{Re}\,\hat{\Sigma}_h^{\text{SM}}\big((m_h^{\text{SM}})^2\big) \stackrel{!}{=} (m_h^{\text{NMSSM}})^2 - \text{Re}\,\hat{\Sigma}_h^{\text{NMSSM}}\big((m_h^{\text{NMSSM}})^2\big)$$

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \implies (m_h^{\text{SM}})^2 \stackrel{!}{=} (m_h^{\text{NMSSM}})^2 - \text{Re}\,\hat{\Sigma}_h^{\text{NMSSM}} ((m_h^{\text{NMSSM}})^2) + \text{Re}\,\hat{\Sigma}_h^{\text{SM}} ((m_h^{\text{SM}})^2)$$

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \implies (m_h^{\text{SM}})^2 \stackrel{!}{=} (m_h^{\text{NMSSM}})^2 - \text{Re}\,\hat{\Sigma}_h^{\text{NMSSM}}\big((m_h^{\text{NMSSM}})^2\big) + \text{Re}\,\hat{\Sigma}_h^{\text{SM}}\big((m_h^{\text{SM}})^2\big)$$

Expand for small ext. moms., again use $(m_h^{SM})^2 = 2(v^{SM})^2 \lambda_h^{SM}$, and solve for λ_h^{SM} :

$$\lambda_h^{\rm SM} = \frac{1}{2(v^{\rm NMSSM})^2} \left[(m_h^{\rm NMSSM})^2 \left(1 - 2\Delta \hat{\Sigma}_h' \right) - \Delta \hat{\Sigma}_h \right]$$

with $\Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$

 \Rightarrow Consistent expansion at 1L, get v/M_{SUSY} corrections for free!

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

$$(M_h^{\text{SM}})^2 \stackrel{!}{=} (M_h^{\text{NMSSM}})^2 \implies (m_h^{\text{SM}})^2 \stackrel{!}{=} (m_h^{\text{NMSSM}})^2 - \text{Re}\,\hat{\Sigma}_h^{\text{NMSSM}}\big((m_h^{\text{NMSSM}})^2\big) + \text{Re}\,\hat{\Sigma}_h^{\text{SM}}\big((m_h^{\text{SM}})^2\big)$$

Expand for small ext. moms., again use $(m_h^{SM})^2 = 2(v^{SM})^2 \lambda_h^{SM}$, and solve for λ_h^{SM} :

$$\lambda_h^{\text{SM}} = \frac{1}{2(v^{\text{NMSSM}})^2} \left[(m_h^{\text{NMSSM}})^2 \left(1 - 2\Delta \hat{\Sigma}_h' \right) - \Delta \hat{\Sigma}_h \right]$$

with $\Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$ $\Rightarrow \text{ Consi} \text{ Large cancellations! } 1L, get v/M_{\text{SUSY}} \text{ corrections for free!}$

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

$$(M_{h}^{\text{SM}})^{2} \stackrel{!}{=} (M_{h}^{\text{NMSSM}})^{2} \Rightarrow (m_{h}^{\text{SM}})^{2} \stackrel{!}{=} (m_{h}^{\text{NMSSM}})^{2} - \operatorname{Re} \hat{\Sigma}_{h}^{\text{NMSSM}} ((m_{h}^{\text{NMSSM}})^{2}) + \operatorname{Re} \hat{\Sigma}_{h}^{\text{SM}} ((m_{h}^{\text{SM}})^{2})$$

Expand for small ext. moms., again use $(m_{h}^{\text{SM}})^{2} = 2(v^{\text{SM}})^{2}\lambda_{h}^{\text{SM}}$, and solve for λ_{h}^{SM} :
$$\lambda_{h}^{\text{SM}} = \frac{1}{2(v^{\text{NMSSM}})^{2}} \left[(m_{h}^{\text{NMSSM}})^{2} (1 - 2\Delta \hat{\Sigma}_{h}) - \Delta \hat{\Sigma}_{h} \right]$$

with
$$\Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$$

 $\Rightarrow \text{ Consi}$
Large cancellations! 1L, get v
(One-loop matching of the VEV, e.g. [Braathen et al. '18])

At one loop, take into account 1L self energies (reuse from implementation for fixed-order calculations in NMSSMCALC):

 $(M^{\text{SM}})^2 \stackrel{!}{=} (M^{\text{SMSSM}})^2 \xrightarrow{} (m^{\text{SM}})^2 \stackrel{!}{=} (m^{\text{SMSSM}})^2 - \text{Re} \hat{\Sigma}_h^{\text{SMSSM}}((m^{\text{SMSSM}}_h)^2) + \text{Re} \hat{\Sigma}_h^{\text{SM}}((m^{\text{SM}}_h)^2)$ **Numerical limit of** $v \rightarrow 0$: excellent agreement with λ_{h}^{SM} from quartic-coupling matching! = $2(v^{SM})^2 \lambda_b^{SM}$, and solve for λ_b^{SM} : $\rightarrow \lambda_h^{\text{SM}} = \frac{1}{2(v^{\text{NMSSM}})^2} \left[(m_h^{\text{NMSSM}})^2 (1 - 2\Delta \hat{\Sigma}_h') - \Delta \hat{\Sigma}_h \right]$ with $\Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$ $\Rightarrow \text{ Consi}$ Large cancellations! 1L, get v (One-loop matching of the VEV, e.g. [Braathen et al. '18])

Summary

NMSSMCALC algorithm to determine SM Higgs mass prediction M_h

NMSSMCALC algorithm to determine SM Higgs mass prediction M_h

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

17

NMSSMCALC algorithm to determine SM Higgs mass prediction M_h

Summary

NMSSMCALC algorithm to determine SM Higgs mass prediction M_h

Uncertainty estimate (I)

- SM uncertainties:
 - ► missing EW corrections (from choice of input scheme): $\Delta_{G_F/\alpha_{M_2}}^{SM} = |M_h^{G_F} M_h^{\alpha_{M_2}}|$
 - missing h.o. terms in $\overline{\text{MS}}$ -OS conversion between $\lambda_h^{\text{SM},\text{MS}}$ and M_h :

$$0 \stackrel{!}{=} p^2 - 2\lambda_h^{\text{SM},\overline{\text{MS}}}(Q_{\text{EW}}) v^2(Q_{\text{EW}}) + \text{Re}\,\hat{\Sigma}_h^{\text{SM},\overline{\text{MS}}}(p^2,Q_{\text{EW}})$$

Solve iteratively for $p^2 = M_h^{\overline{\text{MS}},\text{pole}}(Q_{\text{EW}})$, vary Q_{EW} :

$$\Delta^{\text{SM}}_{Q_{\text{EW}}} = \max\left\{|M^{\text{OS}}_h - M^{\overline{\text{MS}},\text{pole}}_h(2M_t)|, |M^{\text{OS}}_h - M^{\overline{\text{MS}},\text{pole}}_h(M_t/2)|\right\}$$

• missing 3L top corrections:
$$\Delta_{Y_t}^{SM} = M_h(Y_t^{\odot(\alpha_s^2)}) - M_h(Y_t^{\odot(\alpha_s^3)})$$

Uncertainty estimate (II)

- SUSY uncertainties:
 - variation of the matching scale Q_{match} with respect to the SUSY input scale M_{SUSY}:

$$\Delta_{Q_{\text{match}}}^{\text{SUSY}} = \max\left\{ |M_h^{M_{\text{SUSY}}/2} - M_h^{M_{\text{SUSY}}}|, |M_h^{2M_{\text{SUSY}}} - M_h^{M_{\text{SUSY}}}| \right\}$$

Uncertainty estimate (II)

- SUSY uncertainties:
 - variation of the matching scale Q_{match} with respect to the SUSY input scale M_{SUSY}:

$$\Delta^{\text{SUSY}}_{Q_{\text{match}}} = \max\left\{ |M_h^{M_{\text{SUSY}}/2} - M_h^{M_{\text{SUSY}}}|, |M_h^{2M_{\text{SUSY}}} - M_h^{M_{\text{SUSY}}}| \right\}$$

Combined uncertainty:

For pole-mass
matching
$$M_h^{\text{II}}$$
:
$$\Delta M_h^{\text{II}} = \left[\left(\Delta_{G_F}^{\text{SM}} \right)^2 + \left(\Delta_{Q_{\text{EW}}}^{\text{SM}} \right)^2 + \left(\Delta_{Y_t}^{\text{SM}} \right)^2 + \left(\Delta_{Q_{\text{match}}}^{\text{SUSY}} \right)^2 \right]^{\frac{1}{2}}$$

For quartic-coupling
matching M_h^{IV} :
$$\Delta M_h^{\text{IV}} = \left[\left(\Delta M_h^{\text{II}} \right)^2 + \left(\underbrace{M_h^{\text{II}} - M_h^{\text{IV}}}_{V^2/M_{\text{SUSY}}^2} \right)^2 \right]^{\frac{1}{2}}$$

"EFT uncertainty"

Comparison with previous works

Comparison with previous works

Summary

The case of a light singlet

The case of a light singlet

v/M_{SUSY} effects

[CB, Dao, Gabelmann, Mühlleitner, Rzehak '24]

Parameter scan:

$$\begin{split} &100 \, \text{GeV} \leq M_1, M_2 \leq 1.5 \, \text{TeV}, \quad 100 \, \text{GeV} \leq \mu_{\text{eff}} \leq 1.5 \, \text{TeV}, \\ &1 \, \text{TeV} \leq m_{\tilde{Q}_{L_3}}, m_{\tilde{t}_{R_3}} \leq 2.5 \, \text{TeV}, \quad M_{\text{SUSY}} = \sqrt{m_{\tilde{Q}_{L_3}}} m_{\tilde{t}_{R_3}}, \\ &M_3 = \max\{M_{\text{SUSY}}, 2.3 \, \text{TeV}\}, \quad -2.5 \, \text{TeV} \leq A_{\kappa} \leq 100 \, \text{GeV}, \\ &-2.5 \, \text{TeV} \leq A_{\lambda} \leq 2.5 \, \text{TeV}, \quad -\sqrt{6} \leq \hat{X}_t \leq \sqrt{6}, \\ &1 \leq \tan\beta \leq 20, \quad 0.05 \leq \lambda, \kappa \leq 1.0 \end{split}$$

Bounds and constraints:

- ▶ $M_{\tilde{t}_1} > 1310 \text{ GeV}, M_{\tilde{g}} > 2.3 \text{ GeV}, M_{H^+} > 500 \text{ GeV}$
- ▶ 122 GeV $\leq M_h^{\text{II}} \leq 128 \text{ GeV}$
- Using HiggsTools [Bahl et al. '22] to check for compatibility with data from LEP, Tevatron, LHC

Effects of CP-violating phases

[CB, Dao, Gabelmann, Mühlleitner, Rzehak '24]

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

23

Effects of CP-violating phases

[CB, Dao, Gabelmann, Mühlleitner, Rzehak '24]

Summary

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses $(v/M_{susy} \ll 1)$, resums large logarithms
- Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in v \rightarrow 0 limit \checkmark arXiv:2406.17635
 - \rightarrow Estimate of v/M_{susy} contributions for EFT uncertainty

Summary

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses ($v/M_{susy} \ll 1$), resums large logarithms
- Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in v \rightarrow 0 limit \checkmark arXiv:2406.17635
 - \rightarrow Estimate of v/M_{susy} contributions for EFT uncertainty

Implementation in our code NMSSMCALC (https://itp.kit.edu/~maggie/NMSSMCALC)

[Baalio, CB, Dao, Gabelmann, Gröber, Krause, Mühlleitner, Le, Rzehak, Spira, Streicher, Walz]

- Spectrum calculator of 1L & 2L Higgs masses, self couplings, decay widths New: EFT implementation for M_h!
- For the CP-conserving and CP-violating NMSSM
- ...and more: electron EDMs, muon q 2, ρ parameter, $M_{\mu\nu}$

Summary

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses ($v/M_{susy} \ll 1$), resums large logarithms
- Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in v \rightarrow 0 limit \checkmark arXiv:2406.17635
 - \rightarrow Estimate of v/M_{susy} contributions for EFT uncertainty

Implementation in our code NMSSMCALC (https://itp.kit.edu/~maggie/NMSSMCALC)

[Baqlio. CB. Dao. Gabelmann, Gröber, Krause, Mühlleitner, Le, Rzehak, Spira, Streicher, Walz]

- Spectrum calculator of 1L & 2L Higgs masses, self couplings, decay widths New: EFT implementation for M_h!
- For the CP-conserving and CP-violating NMSSM
- ...and more: electron EDMs, muon g 2, ρ parameter, M_{W}

THANK YOU FOR YOUR ATTENTION! 🙂

Backup

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

24

NMSSM tree-level Higgs masses in the unbroken phase limit

Higgs mass matrix \mathcal{M}_{ij} becomes block-diagonal for $v \rightarrow 0$, easy to diagonalise analytically (<u>after</u> applying tadpole equations):

$$\begin{split} h_{1} \sim h_{u} : & m_{h_{1}}^{2} \equiv m_{h_{SM}}^{2} = 0 \quad (\text{since it is } \propto v^{2}) \\ h_{2} \sim a_{s} : & m_{h_{2}}^{2} \equiv M_{A_{s}}^{2} = -\frac{3|\kappa| \operatorname{Re} A_{\kappa} v_{S}}{\sqrt{2} \cos \varphi_{w}} \\ h_{3} \sim a_{d} : & m_{h_{3}}^{2} = M_{H^{\pm}}^{2} = \frac{|\lambda| v_{s} \left(\sqrt{2} \operatorname{Re} A_{\lambda} + |\kappa| v_{s} \cos \varphi_{w}\right)}{\sin \beta \cos \beta \cos(\varphi_{w} - \varphi_{y})} \\ h_{4} \sim h_{d} : & m_{h_{4}}^{2} = m_{h_{3}}^{2} \\ h_{5} \sim h_{s} : & m_{h_{5}}^{2} \equiv M_{S}^{2} = \frac{|\kappa| v_{s} \left(4|\kappa| v_{s} + \sqrt{2} \frac{\operatorname{Re} A_{\kappa}}{\cos \varphi_{w}}\right)}{2} \end{split}$$

Backup Quartic-coupling matching: couplings

$$\begin{split} g_{hhS} &= \frac{1}{2v_s} \left(|\kappa| |\lambda| v_s^2 \sin(2\beta) \cos \varphi_y - 2|\lambda|^2 v_s^2 + M_{H^{\pm}}^2 \sin^2(2\beta) \right), \\ g_{hhA_s} &= -\frac{3}{2} |\kappa| |\lambda| v_s \sin(2\beta) \sin \varphi_y, \\ \frac{\partial g_{hhS}}{\partial \operatorname{Im} A_{\lambda}} &= -|\lambda| \sin(2\beta) \sin(\varphi_{\omega} - \varphi_y), \\ \frac{\partial g_{hhA_s}}{\partial \operatorname{Im} A_{\lambda}} &= -|\lambda| \sin(2\beta) \cos(\varphi_{\omega} - \varphi_y) \end{split}$$

Contribution of a_d tadpole for $v \rightarrow 0$

Backup

One-loop contribution from stops (after expanding stop mixing matrices to O(v)):

$$\delta^{(1)}t_{a_d} = v \frac{3|\lambda||A_t|v_S Y_t^2}{16\pi^2 \sqrt{2}\sin\beta} B(m_{\tilde{Q}_3}, m_{\tilde{U}_{R,3}}) \sin(\varphi_\omega - \varphi_y + \varphi_{A_t})$$

with $B(x, y) = (A(x) - A(y))/(x^2 - y^2)$ and $A(x) = x^2(1 + \ln(\mu^2/x^2))$

General way of computing the contributions: one-loop effective potential:

$$\begin{split} \delta^{(1)}t_{a_d} &= v \cdot \left. \frac{\partial t_{a_d}}{\partial v} \right|_{v=0} + \mathcal{O}(v^2) = v \cdot \left. \frac{\partial^2 V(h, a_d, \dots)}{\partial a_d \partial h} \right|_{h=a_d=0; v=0} + \mathcal{O}(v^2) \\ &= v \cdot \Sigma_{h \to a_d} (p^2 = 0) \Big|_{v=0} + \mathcal{O}(v^2) \\ &= v \cdot \left(\sin \beta \Sigma_{h \to G} (p^2 = 0) - \cos \beta \Sigma_{h \to A} (p^2 = 0) \right) \Big|_{v=0} + \mathcal{O}(v^2) \end{split}$$

One-loop gauge thresholds

Backup

e.g. [Bagnaschi, Giudice, Slavich, Strumia '14]

$$\begin{split} \delta g_{1}^{\mathrm{thr}} &= -\frac{g_{1}^{3}}{512\pi^{2}} \left[12 \ln \frac{\mu_{\mathrm{eff}}^{2}}{Q^{2}} + 3 \ln \frac{M_{H^{\pm}}^{2}}{Q^{2}} + \sum_{i=3}^{2} \left(3 \ln \frac{m_{\tilde{L}_{i}}^{2}}{Q^{2}} + 6 \ln \frac{m_{\tilde{e}_{R,i}}^{2}}{Q^{2}} \right) \right. \\ &\quad + \left. \sum_{i=1}^{3} \left(\ln \frac{m_{\tilde{Q}_{i}}^{2}}{Q^{2}} + 8 \ln \frac{m_{\tilde{u}_{R,i}}^{2}}{Q^{2}} + 2 \ln \frac{m_{\tilde{d}_{R,i}}^{2}}{Q^{2}} \right) \right], \\ \delta g_{2}^{\mathrm{thr}} &= -\frac{g_{2}^{3}}{192\pi^{2}} \left[8 \ln \frac{M_{2}^{2}}{Q^{2}} + 4 \ln \frac{\mu_{\mathrm{eff}}^{2}}{Q^{2}} + \ln \frac{M_{H^{\pm}}^{2}}{Q^{2}} + \sum_{i=3}^{2} \left(\ln \frac{m_{\tilde{L}_{i}}^{2}}{Q^{2}} + 3 \ln \frac{m_{\tilde{Q}_{i}}^{2}}{Q^{2}} \right) \right], \\ \delta g_{3}^{\mathrm{thr}} &= -\frac{g_{3}^{3}}{192\pi^{2}} \left[12 \ln \frac{M_{3}^{2}}{Q^{2}} + \sum_{i=1}^{3} \left(2 \ln \frac{m_{\tilde{Q}_{i}}^{2}}{Q^{2}} + \ln \frac{m_{\tilde{u}_{R,i}}^{2}}{Q^{2}} + \ln \frac{m_{\tilde{d}_{R,i}}^{2}}{Q^{2}} \right) \right] \end{split}$$

Benchmark points (I)

BP1: [Bagnaschi et al. '22] BP2: [Slavich et al. '20] BP3: our own scan

	tan β	λ	к	M 1	M ₂	M ₃	A _t	A_{λ}	A_{κ}	$\mu_{eff.}$	$m_{\tilde{Q}_{L_3}}$	$m_{\tilde{t}_{R_3}}$
BP1	3.0	0.6	0.6	1.0	2.0	2.5	12.75	0.3	-2.0	1.5	5.0	5.0
BP2	20.0	0.05	0.05	3.0	3.0	3.0	-7.20	-2.85	-1.0	3.0	3.0	3.0
BP3	1.27	0.73	0.62	0.24	1.18	2.3	-0.39	0.06	-1.44	0.49	1.79	1.51

	M_h^{II}	M [™] _h	m_{h_2}	<i>m</i> _{<i>h</i>₃}	m _{A1}	m _{A2}	m _{H⁺}
BP1	124.29 (h _u)	124.31 (h _u)	2407.6 (h _s)	2971.8 (h _d)	2905.7 (a)	3000.2 (a _s)	2967.1
BP2	125.26 (h _u)	125.28 (h _u)	2996.4 (h _d)	5744.4 (h _s)	2985.3 (a _s)	3010.5 (a)	2997.8
BP3	127.18 (h _u)	129.47 (h _u)	305.5 (h _s)	659.5 (h _d)	663.8 (a)	1308.7 (a _s)	658.4

Benchmark points (II)

Other SUSY masses:

	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\chi_1^0}$	$m_{\chi^0_2}$	$m_{\chi^0_3}$	$m_{\chi_{4}^{0}}$	$m_{\chi_5^0}$	$m_{\chi_1^+}$	$m_{\chi_2^*}$
BP1	4829.6	5168.2	997.2	1491.5	1502.4	2010.5	3003.3	1490.2	2010.5
BP2	2831.6	3164.7	2932.7	3000.0	3000.0	3067.9	6000.0	2940.9	3060.0
BP3	1514.2	1799.1	232.8	484.1	498.2	835.4	1192.7	477.3	1192.6

Uncertainties:

	$\Delta_{Y_t}^{SM}$	$\Delta_{Q_{EW}}^{SM}$	$\Delta^{SM}_{G_F/\alpha_{M_Z}}$	$\Delta_{Q_{match}}^{SUSY}$	$\Delta_{v^2/M_{SUSY}^2}^{SUSY}$	ΔM_h^{II}	∆M [™] _h
BP1	-738	208	-19	376	-21	854	836
BP1	-679	212	-69	403	-12	819	820
BP1	-401	197	21	834	-2294	947	2452

Quartic-coupling vs. pole-mass matching for $v \rightarrow 0$

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

32

Comparison between EFT and fixed-order results

