

Updates of FlexibleEFTHiggs with applications to the MSSM and NMSSM

Johannes Wünsche, Thomas Kwasnitza, Dominik Stöckinger, Alexander Voigt

KUTS@DESY, 27 June 2024

- experimental Higgs mass: $M_h^{
 m exp} = 125.25 \pm 0.11 \; {
 m GeV}$ [PDG,2024]
- Why NMSSM?
 - simple perturbation of MSSM with interesting Higgs phenomenology
 - solution of μ and little hierarchy problem
 - no fine tuning of x_t necessary
- Why FlexibleEFTHiggs?
 - hybrid approach = combination of fixed-order and EFT approach in Higgs mass calculation
 - structurally simple matching conditions \Rightarrow easily automatizable
 - implemented in FlexibleSUSY for MSSM and NMSSM

- NMSSM Higgs sector:
 - superpotential:

$$W \supset -\lambda \hat{S} \left(\hat{H}_d \cdot \hat{H}_u \right) + \frac{\kappa}{3} \hat{S}^3$$

 \Rightarrow generation of effective μ -parameter: $\mu_{\mathrm{eff}} = \lambda v_s$

- soft SUSY-breaking Lagrangian:

$$\mathcal{L}_{\rm soft} \supset -M_{H_d}^2 |H_d|^2 - M_{H_u}^2 |H_u|^2 - M_S^2 |S|^2 - \left(\lambda A_\lambda S \left(H_d \cdot H_u\right) - \frac{\kappa}{3} A_\kappa S^3 + {\rm h.c.}\right)$$

- assumption: **CP-conserving** Higgs sector $\Rightarrow \lambda$, κ real!
- expansion:

$$H_{d} = \begin{pmatrix} v_{d} + \frac{1}{\sqrt{2}} \left(\phi_{d}^{0} - i\chi_{d}^{0} \right) \\ -\phi_{\overline{d}}^{-} \end{pmatrix} \qquad H_{u} = \begin{pmatrix} \phi_{u}^{+} \\ v_{u} + \frac{1}{\sqrt{2}} \left(\phi_{u}^{0} + i\chi_{u}^{0} \right) \end{pmatrix} \qquad S = v_{s} + \frac{1}{\sqrt{2}} (s + ia)$$

 $\Rightarrow \text{mass mixing:} \qquad \phi_u^0, \phi_d^0, s \to h_1, h_2, h_3 \qquad \chi_u^0, \chi_d^0, a \to a_1, a_2, G^0 \qquad \phi_u^{\pm}, \phi_d^{\pm} \Rightarrow H^{\pm}, G^{\pm}$ $\Rightarrow \text{case } v \to 0: \qquad \phi_u^0 \sim h_1 \stackrel{\frown}{=} h \qquad \phi_d^0 \sim h_2 \qquad s \sim h_3$

- NMSSM Higgs sector:
 - tree-level Higgs mass:
 - upper limit on lightest CP-even Higgs (for $v \ll m_A$) :

$$m_h^2 < M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$$

– in approximation $v \ll m_s$:

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta - \frac{\lambda^3 \left(2\mu_{\rm eff} - (A_\lambda + 2\frac{\kappa}{\lambda}\mu_{\rm eff})\sin 2\beta\right)^2}{\kappa \mu_{\rm eff}(A_\kappa + 4\frac{\kappa}{\lambda}\mu_{\rm eff})}$$

- recent status of NMSSM Higgs mass calculation:
 - FO calculations:
 - \rightarrow full/partial N²LO calculations [0907.4682] [1411.4665] [1601.08100] [2106.06990]
 - EFT calculations:
 - \rightarrow NNLL calculations with (partial) NMSSM-specific 2-loop matching corrections <code>[1703.03267]</code> <code>[2206.04618]</code>
 - hybrid calculations:
 - \rightarrow LL + NNLO calculation implemented with <code>SARAH/SPheno</code> [1411.0675]
 - \rightarrow NLL + NLO calculation with FlexibleEFTHiggs method, implemented in FlexibleSUSY [1609.00371] [1710.03760]

- FlexibleEFTHiggs method = hybrid approach:
 - calculation structure:

Updates of FlexibleEFTHiggs TU Dresden // Johannes Wünsche KUTS@DESY, 27 June 2024

Slide 6 of 23

- FlexibleEFTHiggs method = hybrid approach:
 - advantages:
 - structurally simple, easily applicable to any BSM model
 - easy to automate
 - disadvantages:
 - difficult to transfer to other EFTs than SM
 - careful treatment of parameter matching for 2-loop accuracy needed
 - differences between EFT- and full-model parametrization

Slide 8 of 23

- FlexibleEFTHiggs implementation in FlexibleSUSY:
 - two-scale solver:

Updates of FlexibleEFTHiggs TU Dresden // Johannes Wünsche KUTS@DESY, 27 June 2024

- current status on FlexibleEFTHiggs implementation in FlexibleSUSY:
 - MSSM:
 - so far: NLL + NLO FEFT-calculation implemented
 - new: N³LL + N³LO FEFT-calculation added
 - \rightarrow model name: NUHMSSMNoFVHimalayaEFTHiggs
 - NMSSM:
 - so far: NLL + NLO FEFT-calculation implemented
 - new: N²LL + N²LO FEFT-calculation added
 - \rightarrow model name: NMSSMEFTHiggs
 - **soon:** usage of full model parametrization $\rightarrow x_t$ -resummation! [2003.04639]
 - \rightarrow new solver: shooting solver
 - publicly available under github.com/FlexibleSUSY/FlexibleSUSY

- NMSSM Higgs mass calculation:
 - renormalization scheme: $\overline{\rm DR}$ ($\overline{\rm MS}$ in SM)
 - 2-loop $\hat{\lambda}$ -matching:

$$\Delta \hat{\lambda} = \Delta \hat{\lambda}_{\text{MSSM}}^{1l} + \Delta \hat{\lambda}_{\lambda,\kappa}^{1l} + \Delta \hat{\lambda}_{\text{MSSM}}^{2l}$$

 $\Delta \hat{\lambda}_{\rm MSSM}^{1l} \mathrel{\hat{=}} {\sf full}$ MSSM-like 1-loop contributions

 $\Delta \hat{\lambda}_{\lambda,\kappa}^{1l} \stackrel{\circ}{=} \text{full NMSSM-specific 1-loop contributions} \rightarrow \mathcal{O}\left(\lambda^4 + \lambda^2 \kappa^2 + \kappa^4\right)$

 $\Delta \hat{\lambda}_{\mathrm{MSSM}}^{2l} \stackrel{}{=} \mathsf{full} \; \mathsf{MSSM}\text{-like 2-loop contributions } (g_{1,2} = 0) \; \rightarrow \; \mathcal{O}\Big(g_3^2(y_t^2 + y_b^2)^2 + (y_t^2 + y_b^2 + y_\tau^2)^3\Big)$

- 3-loop β-functions
 - \Rightarrow resummation of MSSM-like NNLL
 - \Rightarrow resummation of NMSSM-specific NLL

- high-scale uncertainty ΔM_h^{HS} from variation of Q_{match} :

$$\Delta M_h^{\rm HS} = \max_{Q \in [M_S/2, 2M_S]} \left| M_h(Q_{\rm match} = M_S) - M_h(Q_{\rm match} = Q) \right|$$

- reliable method in MSSM \rightarrow also reliable for estimation of NMSSM-specific terms?
- low-scale uncertainty $\Delta M_h^{\rm LS}$ determined as maximum from two methods:

$$\Delta M_h^{\rm LS} = \max\{\Delta M_h^{Q_{\rm low}}, \Delta M_h^{\rm PLO}\}$$

– variation of Q_{low} :

$$\Delta M_h^{Q_{\mathrm{low}}} = \max_{Q \in [M_t/2, 2M_t]} \left| M_h(Q_{\mathrm{low}} = M_t) - M_h(Q_{\mathrm{low}} = Q) \right|$$

- variation of loop-order of QCD-corrections in relation between M_t and \hat{y}_t :

$$\Delta M_h^{\rm PLO} = \left| M_h^{\hat{y}_t,2l} - M_h^{\hat{y}_t,3l} \right|$$

• total uncertainty:

$$\Delta M_h = \Delta M_h^{\rm HS} + \Delta M_h^{\rm LS}$$

- coverage of λ -dependent contributions by estimation:
 - λ -dependent contributions covered by M_h calculation:

- effect of matching scale variation:

$$\frac{\partial M_h}{\partial (\ln Q_{\rm match})} \supset \propto \kappa_L^2 \lambda^{\leq 6} + \ \propto \kappa_L^3 \lambda^{\leq 8} \ + \mathcal{O}(\kappa_L^4)$$

 $L = \ln \frac{Q_{\text{match}}}{Q_{\text{low}}}$

- coverage of κ -dependent contributions by estimation:
 - $\hat{\lambda}_{ ext{tree}}$ regarded to be of $\mathcal{O}(\kappa^0)$
 - $v \rightarrow 0$ limit assumed
 - κ -dependent contributions covered by M_h calculation:

 \Rightarrow different appearance of λ and κ in perturbation series of $M_h^2!$

- coverage of κ -dependent contributions by estimation:
 - effect of matching scale variation:

$$\frac{\partial M_h}{\partial (\ln Q_{\rm match})} \supset \propto \kappa_L^2 \kappa^{\leq 6} \ + \kappa_L^3 \Big(\propto \kappa^{\leq 6} L + \ \propto \kappa^{\leq 8} \Big) \ + \mathcal{O}(\kappa_L^4)$$

 \Rightarrow terms of highest order in κ not simulated, e.g. $\mathcal{O}(\kappa_L^2 \kappa^8)$ and $\mathcal{O}(\kappa_L^3 \kappa^8 L)!$

- impact of not simulated terms:

 \rightarrow rough estimation by comparison of simulated and not simulated contributions

- coverage of κ -dependent contributions by estimation:
 - impact of not simulated terms \rightarrow rough estimation:

$$\rightarrow \operatorname{at} \mathcal{O}(\kappa_L^2 L^0): \qquad \phi \qquad s \qquad s \qquad s \qquad \phi \qquad \phi \qquad \gamma \qquad \delta \lambda \sim \underbrace{\kappa_L^2 \left(\frac{\mu_{\text{eff}}}{M_S}\right)^6 \frac{\kappa^8}{\lambda^2} + \text{ terms } \propto \kappa^{\leq 7} \\ \qquad \phi \qquad \gamma \qquad s \qquad \delta \lambda \sim \underbrace{\kappa_L^2 \left(\frac{\mu_{\text{eff}}}{M_S}\right)^6 \frac{\kappa^8}{\lambda^2} + \text{ terms } \propto \kappa^{\leq 7} \\ \qquad \phi \qquad \gamma \qquad \gamma \qquad \gamma \qquad \gamma \qquad \gamma \qquad \gamma \qquad \delta \lambda \sim \underbrace{\kappa_L^2 \left(\frac{\mu_{\text{eff}}}{M_S}\right)^4 \kappa^6}_{\Delta_6} + \text{ terms } \propto \kappa^{\leq 5} \\ \qquad \qquad \Rightarrow \underbrace{\Delta_8}_{\Delta_6} = \left(\frac{\mu_{\text{eff}}}{M_S}\right)^2 \frac{\kappa^2}{\lambda^2} \qquad \Rightarrow \text{ large impact if } \lambda \ll \kappa$$

 \Rightarrow missing κ -dependent terms reliably estimated if $\lambda \sim \kappa$

• M_h and ΔM_h dependence on M_S :

- for $0.3 \text{ TeV} < M_S < 100 \text{ TeV}$: uncertainty almost constant with $\Delta M_h \approx 0.6 \text{ GeV}$

Slide 17 of 23

• $M_h(\lambda = \kappa)$ dependence:

- behaviour dominated by tree-level dependence

Slide 18 of 23

• ΔM_h dependence on λ and κ :

- dashed lines indicate perturbativity limit: $\lambda^2 + \kappa^2 \le 0.6$
- below perturbativity limit nearly constant $\Delta M_h \sim 0.7~{
 m GeV}$

• M_h and ΔM_h dependence on x_t :

- most relevant parameter for value of estimated uncertainty
 - \Rightarrow uncertainties strongly MSSM-dominated!
- ΔM_h minimized for $x_t = 0$ (and also for $x_t \approx -3.5$)

- benchmark points:
 - parameter choice:

BMP	an eta	λ	κ	$\mu_{\rm eff} \; / \; {\rm GeV}$	$A_\lambda \; / \; {\rm GeV}$	$A_\kappa \; / \; {\rm GeV}$	x_t
S1	20	0.05	0.05	800	1000	-500	1.78
S2	20	0.05	0.05	300	-250	-950	2.05
S4	7	0.30	0.30	800	5000	-100	2.05
S5	7	0.30	0.30	300	1200	-10	2.58
S7	3	0.60	0.30	750	2000	-1000	1.52
S8	3	0.55	0.35	300	700	-600	1.76
S10	3	1.50	1.50	800	250	-1000	0.10

with $M_S = 3.0 \text{ GeV}$ and $A_b = A_\tau = 0$

– all points chosen such that H_1 is SM-like

- benchmark points:
 - calculated Higgs mass spectrum:

BMP	$M_{H_1}/{\rm GeV}$	$M_{H_2}/{\rm GeV}$	$M_{H_3}/{\rm GeV}$	$M_{A_1}/{\rm GeV}$	$M_{A_1} \; / \; {\rm GeV}$	$\Delta M_h \; / \; {\rm GeV}$
S1	125.21	1469.62	5345.93	1095.26	5345.96	0.97
S2	125.19	274.42	432.08	431.78	924.37	0.68
S4	125.21	1573.98	5744.67	476.89	5745.13	1.09
S5	125.28	590.78	1794.14	136.81	1793.33	1.31
S7	125.27	451.87	2421.84	1070.46	2420.74	0.84
S8	125.23	169.35	935.24	593.00	931.76	0.72
S10	125.29	1159.56	1612.55	1358.08	1624.90	14.75

5. Summary and Outlook

- FlexibleEFTHiggs calculation, implemented in FlexibleSUSY:
 - MSSM: N³LO + N³LL level
 - NMSSM: N²LO + N²LL level
 - publicly available, soon also with full-model parametrization
- matching scale variation as reliable estimation of missing λ -dependent contributions, in case $\lambda \sim \kappa$ and $v \ll M_S$ also for κ -dependent ones
- + ΔM_h dominated by missing MSSM contributions (λ and κ perturbative up to Planck scale)
- typical order of uncertainty: $\Delta M_h \sim 0.7~{
 m GeV}$ (for $x_t pprox 0$)
- further steps:
 - more reliable estimation of missing *κ*-dependent terms
 - detailed comparison with other calculations
 - implementation of MSSM-like 3-loop corrections in model NMSSMEFTHiggs?

