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Motivation: First Order Phase Transition in the 
Early Universe
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• Mechanism to satisfy Sakharov’s conditions for generation matter-
antimatter asymmetry 

• Naturally occurring in most of extensions of Higgs sectors 
• Perfect candidate for gravitation wave detection in close future 

experiments (LISA, etc)

[Laine, 2000]



Motivation: uncertainties

[Croon et al, 2020]
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Motivation: uncertainties

[White, 2024]
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Effective action/potential

Γ[ϕ] = W[J] − ∫ d4x J(x)ϕ(x),

Veff[ϕ] =
Γ[ϕ]
(vol)
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Renormalization scale independence at 
zero temperature

* this holds irregardless of renormalization scheme, as beta functions and Logs 
in 1loop potential stay the same 
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• Thermal loop corrections, which are dominant during the phase transition, 
introduce large renormalization scale dependence. 
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Renormalization scale dependence at 
non-zero temperature



Daisy resummation

• The presence of hierarchy between hard (  ) and soft (  ) scales 
requires resummation of the hard modes, which messes up with the loop 
order  

∼ T ∼ gT
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• To restore renormalisation scale invariance, we need to add higher loop 
thermal contributions 
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Renormalization scale independence at 
non-zero temperature



[Nielsen, 1975]

Gauge dependency
• The effective action itself is an intrinsically gauge dependent quantity, as 

it’s defined for the non-zero source term, and the system has a non-
dynamical background change. 

• But, it’s gauge dependent according to Nielsen identity: 

•   is gauge invariant at stationary point (extremums) Veff
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Gauge independency

• Gauge invariant results can be obtained by systematic -expansionℏ

[Patel, et.al., 2011]11



Gauge dependency (again)

• Issue with DAISY resummation - not following strict loop expansion 

• There’s a way to get gauge-independent DAISYies
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High-T EFT
Separating logarithms

[Kajantie et al, 1994]

• Large  - dependence & need for resummations indicate large 
separation of scales 

• Relevant scales: 

• Basically, we have too many logarithms: 

μ
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High-T EFT ℒ4d

ℒ3d

V3d
eff / Γ

3d
eff

V4d
eff / Γ

4d
eff

Physical observables (Tc, Tn, ΩGW, …)

High-T EFT lives in 3D: 
• Simpler integrals 
• Superrenormalizable theory 

Temperature is integrated out 
• Use  QFT framework  
• Resummations are already included 
• Gauge invariance is straightforward

T = 0
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Automated matching tool: 
DRalgo [Ekstedt, et.al. 2022] 



Dimensional reduction
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• Mass parameters 

• Quartics



DRalgo
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[Ekstedt, Schicho, Tenkanen, 2022]

Automated matching (hard and soft): 
• 2 loop mass parameters matching 
• 2 loop Debye mass calculation 
• 1 loop couplings matching 

Automated effective potential calculation 
• 2 loop effective potential in soft/ultra-soft theory (*3loop is coming) 

Automated calculation of beta function and anomalous dimensions 
• In 4D parent theory 
• In 3D EFT 

Matching of higher order scalar* operators 
• Dimension 6 and 8 operators



Benchmark model: cxSM

ℒcxSM ⊃ ∂μH†∂μH + μ2
h H†H + λh(H†H )2

+
1
2

|∂μS |2 +
1
2

b2 |S |2 + d2 |S |4 +
1
2

δ2 |S |2 H†H

mH2
= mA = 62.5 GeV,

 d2 = 0.5
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Results: EFT validity 

ℒ4d

ℒ3d
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Results: Loop convergence in EFT approach
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Equilibrium Thermodynamics: 
renormalization scale dependence



Equilibrium Thermodynamics: 
gauge (in)variance
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Lagrange parameters determination
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Another possible source of uncertainties

n-loop MS relations

Lagrange parameters (μ, λ, g, …)

Physical inputs (Mh, MW, MZ, GF, …)

Mh = mh + Πh(p2 = M2
h)

V4d
eff

OS-like renormalization

∂hVtree = ∂hVeff + ∂hVc.t.

∂2
hVtree = ∂2

hVeff + ∂2
hVc.t.

( ∼ Πh(p2 = 0))

• Missing momentum 
contribution 

• Gauge dependent 
• Taking derivatives must be 

handled carefully 
• Goldtone catastrophe in 

Landau gauge 
• Only scalar potential couplings 

are renormalised



Lagrange parameters determination
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Landau gauge: Goldstone catastrophe
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• Issue arrises, as Goldstone bosons are massless at tree-level minimum in 
Landau gauge 

• Smooth limit  in  ?ξ → 0 Rξ



Background vs standard  gauges.Rξ
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ℒg.f. = −
1
2ξ

(∂μAa
μ + iξgata

ikϕ̃iϕk)2

ϕ̃i = hi - background field ϕ̃i = hi,min = v - minimal field configuration

(!wrong derivatives*!) (complicated mixings)



Background  gauges: missing partsRξ
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• Only with the correct mixing, we get the relation right:



Conclusions.
• Thermally driven phase transitions introduce new scaling relations, which 

require modification of the usual perturbation theory 

• Large scale separations and related resummations can be rigorously taken 
into account with the help of EFT techniques (dimensional reduction). 

• Derivatives of the effective potential derivatives have to be taken carefully, 
including corresponding mixings in . 

• To achieve similar to equilibrium thermodynamics renormalization scale 
independence for non-equilibrium quantities, the bounce action has to be 
calculated at higher orders. 

Rξ
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[Weir, 2020]


