Higgs and Vector Boson Decays to a Meson and a Photon at the ATLAS experiment

Robert Ward

University of Hamburg

DESY Particle Physics Seminar

25th March 2024

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

The Higgs Boson

R. Ward (University of Hamburg)

25th March 2024 2

Higgs and W/Z Boson Decays to a Meson and a Photon

$H(Z) \rightarrow \mathcal{M}\gamma$: Motivation

≻Search for exclusive $H(Z) \rightarrow \mathcal{M}\gamma$ decays: \mathcal{M} = vector mesons ($q\bar{q}; J^{PC} = 1^{--}$)

 $\,\circ\,$ Two destructively interfering contributions to decay amplitude

> *H* decays: probe magnitude and sign of quark Yukawa couplings – $\mathcal{O}(10^{-6})$ BRs

Distinct signatures reduce large QCD backgrounds

> Z decays: provide reference channels and tests of QCD factorisation – $\mathcal{O}(10^{-8})$ BRs

 \circ 1000 × higher production rate of Z bosons at LHC compared to Higgs bosons: probe rarer decays

$H(Z) \rightarrow \mathcal{M}\gamma$: SM Expectations

	SM expected branching fraction $\mathcal{B}(H/Z \to \mathcal{M}\gamma)$				
	Meson \mathcal{M}	Н	Z	References	
	J/ψ	$(2.99^{+0.16}_{-0.15}) \times 10^{-6}$	$(8.96^{+1.51}_{-1.38}) \times 10^{-8}$	[27–29]	
Heavy mesons	$\psi(2S)$	$(1.03 \pm 0.06) \times 10^{-6}$	—	$[28]^1$	
(quarkonia) –	$\Upsilon(1S)$	$(5.22^{+2.02}_{-1.70}) \times 10^{-9}$	$(4.80^{+0.26}_{-0.25}) \times 10^{-8}$	[27–29]	
q = b , c	$\Upsilon(2S)$	$(1.42^{+0.72}_{-0.57}) \times 10^{-9}$	$(2.44^{+0.14}_{-0.13}) \times 10^{-8}$	[27–29]	
	$\Upsilon(3S)$	$(0.91^{+0.48}_{-0.38}) \times 10^{-9}$	$(1.88^{+0.11}_{-0.10}) \times 10^{-8}$	[27–29]	
Light masons	ϕ	$(2.31 \pm 0.11) \times 10^{-6}$	$(1.04 \pm 0.12) \times 10^{-8}$	[25, 30]	
Light mesons \Box	ho	$(1.68 \pm 0.08) \times 10^{-5}$	$(4.19 \pm 0.47) \times 10^{-9}$	[25, 30]	
q = s, u, u	ω	$(1.48 \pm 0.08) \times 10^{-6}$	$(2.82 \pm 0.40) \times 10^{-8}$	[25, 30]	
	Theory Refs	: <u>25: JHEP 08 (2015) 012</u> , <u>27: P</u> F	RD 95 (2017) 054018 <mark>,</mark>		
	28: PRD 96	28: PRD 96 (2017) 116014, 29: PRD 97 (2018) 016009, 30: JHEP 04 (2015) 101			

 $ightarrow H \rightarrow \Upsilon(nS)\gamma$ particularly sensitive to BSM physics (e.g <u>arXiv:2209.01200</u>)

ATL-PHYS-PUB-2023-004

Flavour-Violating Decays of the Higgs and Z Bosons into $\mathcal{M}oldsymbol{\gamma}$

> Choosing "flavoured" $\mathcal{M}(q\bar{q}')$ probes flavour-violating couplings

 $\,\circ\,$ Forbidden at tree-level within the SM

 $H(Z) \rightarrow \mathcal{M}\gamma$ with flavour violation

Recent SM $H(Z) \rightarrow \mathcal{M}\gamma$ predictions: <u>arXiv:2312.11211</u>

$W^{\pm} \rightarrow \mathcal{M}^{\pm} \gamma$: Motivation

► W decays: novel tests of QCD factorisation and quark couplings – $O(10^{-9})$ BRs • Potential new probe for W mass measurement through fully reconstructed decays

ATLAS-PHOTO-2023-022

The ATLAS Experiment

General-purpose particle physics experiment at the LHC

3k authors across 182 institutions in 42 countries

Event rate ≈ 40 MHz – capture interesting interactions with a two-level trigger system

 \odot Level-1 (L1): Hardware based (\rightarrow 100 kHz)

 \odot Level-2/High-level Trigger (HLT): Software based (\rightarrow 1 kHz)

Juon Spectromete

adronic Calorimeter (TileCal)

Trackin

ansition Radiation Track

Pixel & Silicon-Strip Detect

neutrin

Public Results

>ATLAS has set limits on a multitude of these exclusive decay channels

Employ dedicated triggers and novel background model methods

Bold = Latest Result

Decay Channels	\sqrt{s} (TeV)	Lumi. (fb ⁻¹)	Publication
$H(Z) \to (J/\psi, \Upsilon(nS, n=1,2,3))\gamma$	8	20	<u>PRL 114 (2015) 12, 121801</u>
$H(Z) \to \phi \gamma$	13	2.7	<u>PRL 117 (2016) 11, 111802</u>
$H(Z) \rightarrow (\phi, \rho)\gamma$	13	36	<u>JHEP 07 (2018) 127</u>
$H(Z) \to (J/\psi, \psi(2S), \Upsilon(nS))\gamma$	13	36	<u>PLB 786 (2018) 134-155</u>
$H(Z) \rightarrow (J/\psi, \psi(2S), \Upsilon(nS))\gamma$	13	139	EPJC 83 (2023) 781
$H(Z) \to \omega \gamma \& H \to K^* \gamma$	13	90 (134)	PLB 847 (2023) 138292 Iast year!
$W^{\pm} ightarrow (\pi^{\pm}, K^{\pm}, \rho^{\pm}) \gamma$	13	137 (140)	arXiv:2309.15887
$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$	13	136	arXiv:2402.18731
Searches fo and Z b collisions a	r exclusive Higg oson decays into t $\sqrt{s} = 13$ TeV w	is boson decays into D^* $D^0\gamma$ and $K^0_s\gamma$ in pp with the ATLAS detector	Search for the exclusive W boson hadronic decay $W^{\pm} \rightarrow \pi^{\pm}\gamma, W^{\pm} \rightarrow K^{\pm}\gamma$ and $W^{\pm} \rightarrow \rho^{\pm}\gamma$ with the ATLAS detector
	Submittee	to PLB	Submitted to PRL

Time

Higgs and W/Z Boson Decays to a Meson and a Photon

25th March 2024 8

$H(Z) ightarrow (\phi, \rho) \gamma$: Overview

→ $H \rightarrow \phi(K^+K^-)\gamma$: *s*-quark coupling → $H \rightarrow \rho(\pi^+\pi^-)\gamma$: *u*- & *d*-quark couplings

- > **Dedicated** triggers based on single photon + modified τ -lepton algorithms
- > Background from multi-jet and γ + jet sources
 - Non-parametric data-driven background model

$H(Z) ightarrow (\phi, \rho) \gamma$: Trigger Strategy

$H(Z) \rightarrow (\phi, \rho)\gamma$: Signal Properties

 \triangleright Larger photon and track $p_{\rm T}$ in H decays leads to larger signal efficiencies than for Z decays

Total Signal Efficiency				
Channel	Z Signal	H Signal		
$\phi\gamma$	10%	17%		
ργ	2.4%	8%		

> Small opening angles between decay products

• Particularly for $\phi \to K^+K^-$: tracking in dense EPJC 77 (2017) 673

25th March 2024 11

$H(Z) \rightarrow (\phi, \rho)\gamma$: Signal Modelling

>Model boson mass distributions with analytical fits to simulated events

- \circ *H* decays sum of two Gaussians with a common mean
- \circ Z decays (sum of two Voigtians) × efficiency factor
 - Voigtian: convolution of Gaussian (detector resolution) and Lorentz (Z width) distributions
 - Efficiency factor: accounts for turn-on in signal efficiency with Z mass

>Analogous approach is applied in all exclusive $\mathcal{M}\gamma$ searches

Specific functions may vary

R. Ward (University of Hamburg)

<u>JHEP 07 (2018) 127</u>

Aside: Non-Parametric Data Driven Background Modelling

Generation Region

(Loose Selection)

Signal Region

(Full Selection)

Non-parametric data-driven background model: <u>JHEP 10 (2022) 001</u>
 Ouseful for non-resonant backgrounds from a mix of processes

Validation

Region 1

(Meson p_T)

- Complex shape: difficult to model analytically/parametrically
- Complex processes: difficult to simulate

→ Use $H \rightarrow \phi \gamma$ with γ + jet MC as a case study ○ Discriminant variable: $m(\phi, \gamma)$ (three-body mass)

Pseudo-event: data-struct of \mathcal{M}/γ 4-vectors + isolation variables

p_T(φ)

 $\Delta \Phi(\phi, \gamma)$

 $\Delta \Phi(\phi, \gamma) = \Delta \eta(\phi, \gamma)$

Sampling Scheme

p_T(φ)

р⊤(γ)

p_T(γ)

р⊤(γ)

 ϕ lso

1. Model correlations in data in loose Generation Region

- 2. Sample many pseudo-events using model
- 3. Apply Validation Region selection to evaluate performance
- 4. Apply Signal Region selection (and smooth) for final model

Validation

Region 2

(Meson Isolation)

Non-Parametric Data Driven Model: Validation

> Many ways to evaluate performance! – validation regions, sideband selections, alternate variables

R. Ward (University of Hamburg)

Higgs and W/Z Boson Decays to a Meson and a Photon

25th March 2024 14

Non-Parametric Data Driven Model: Shape Systematics and Fit

>Ultimately, only the modelling of the discriminant variable in the SR is important

- Typically define several shape uncertainties to allow model to adapt to data
 - Generate alternate templates by modifying generation procedure; data constrains nuisance parameters

Non-Parametric Data Driven Model: Signal Injection

> Procedure is robust against signal contamination in Generation Region

 \circ Inject 5.5 σ worth of signal in GR in case study – change in model prediction near H signal in SR only $\sim 2\%$

JHEP 10 (2022) 001

25th March 2024 16

$H(Z) \rightarrow (\phi, \rho)\gamma$: Background Sampling Sequence

Specific sampling scheme is flexible – can optimise based on correlations in each search \circ Blue = modelled in $\phi\gamma$; red = modelled in $\rho\gamma$

JHEP 07 (2018) 127

$H(Z) ightarrow (\phi, \rho) \gamma$: Results

> Unbinned likelihood fit in $m(K^+K^-\gamma)$ and $m(\pi^+\pi^-\gamma)$

JHEP 07 (2018) 127

• Non-parametric data-driven model for backgrounds; simulation for signals

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Overview

 \circ 78% efficiency w.r.t offline for $K^*\gamma$; 52% for $\omega\gamma$

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Results

> Unbinned likelihood fit in $m(K^{\pm}\pi^{\mp}\gamma)$ and $m(\pi^{+}\pi^{-}\pi^{0}\gamma)$

PLB 847 (2023) 138292

Non-parametric data-driven model for backgrounds; simulation for signals

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Overview

 \circ 69% efficiency w.r.t offline for $D^*\gamma$; 39% for $K_s^0\gamma$

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Vertex Reconstruction

Secondary vertex reconstruction suppresses backgrounds

• Reject prompt vertices (i.e reject values below dashed lines)

• Vertex fit also improves meson reconstruction

arXiv:2402.18731

25th March 2024 22

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Results

> Unbinned likelihood fit in $m(K\pi\gamma)$ and $m(\pi^+\pi^-\gamma)$

Non-parametric data-driven model for backgrounds; simulation for signals

$H(Z) \rightarrow Q\gamma$: Overview

$H(Z) \rightarrow Q\gamma$: Background Modelling

Exclusive background

$◦ q\bar{q} → μ^+μ^-γ$ production (Drell-Yan)

Analytical fit to simulated events

Inclusive background

- Multi-jet and γ +jet sources with $Q/\mu^+\mu^-$ production
- Non-parametric data-driven background model

$H(Z) \rightarrow Q\gamma$: Three-body Mass Versus Dimuon Mass

R. Ward (University of Hamburg)

Higgs and W/Z Boson Decays to a Meson and a Photon

$H(Z) \rightarrow \psi(nS)\gamma$: Results

>Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-), m(\mu^+\mu^-\gamma)$

Discriminates between all signal and background contributions

 $\gg \psi(nS)\gamma$ analysis fit is performed in a single category

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Results

25th March 2024 28

$H \rightarrow Q\gamma$: κ -Framework Interpretation

 $\geq \kappa_q$ coupling modifier: ratio of quark coupling g_q over the SM-expectation, $\kappa_q = \frac{g_q}{g_q^{SM}}$

 \succ Combine with $H \rightarrow \gamma \gamma^{\$}$ to interpret in terms of $\kappa_{c,b}/\kappa_{\gamma}$: §ATLAS-CONF-2020-026

$$\frac{\mu_{H\to J/\psi\gamma}}{\mu_{H\to\gamma\gamma}} \approx \frac{\left|\mathcal{A}_{\rm ind} + \frac{\kappa_c}{\kappa_\gamma}\mathcal{A}_{\rm dir}\right|^2}{\Gamma_{H\to J/\psi\gamma}^{\rm SM}} \quad \mathcal{A}_{\rm dir}$$

u: observed rate normalised to SM rate

Analysis	κ Ratio	Expected Bounds	Observed Bounds
$H\to J/\psi\gamma$	κ_c/κ_γ	(-120, 161)	[-133, 175]
$H \to \Upsilon(nS)\gamma$	κ_b/κ_γ	(-37, 39)	[-37, 40]

•
$$BR_{H \to \psi(nS)\gamma}^{SM} \approx 10^{-6}$$

• $|\mathcal{A}_{ind}| \approx 20 \times |\mathcal{A}_{dir}|$
• $\mathcal{A}_{ind}, \mathcal{A}_{dir}$ almost cancel in SM

Q

 $\mathcal{A}_{\mathrm{dir}}$

Direct

 $\mathcal{A}_{\mathrm{ind}}$

Indirect

Other *k*-Framework Results

 $\succ \kappa$ -interpretation complements results from other searches

- $H \rightarrow b\overline{b}$: <u>EPJC 81 (2021) 178</u>
- $H \rightarrow c\bar{c}$: <u>EPJC 82 (2022) 717</u>
 - $|\kappa_c| < 8.5 (12.4) @ 95\%$ CL
 - $|\kappa_c/\kappa_b| < 4.5 (5.1) @ 95\%$ CL
- \circ Measurements of p_{T}^{H} : <u>JHEP 05 (2023) 028</u>

Channel	Parameter	Observed 95% confidence interval	Expected 95% confidence interval
$H \to ZZ^* \to 4\ell$	КЪ	[-1.1, 1.2]	[-1.2, 1.2]
	K _C	[-5.2, 5.4]	[-5.7, 5.6]
$H ightarrow \gamma \gamma$	КЪ	[-1.1, 1.1]	[-1.2, 1.2]
	K _C	[-5.2, 5.0]	[-5.4, 5.5]
Combined	К _b	[-1.1, 1.1]	[-1.2, 1.2]
comonica	K _C	[-5.0, 5.1]	[-5.2, 5.4]

CMS result for κ_c/κ_γ from $H \to J/\psi \gamma$: Expected = (-121,161); observed = [-157,199]

CMS-PAS-SMP-22-012

R. Ward (University of Hamburg)

$W^{\pm} ightarrow (\pi^{\pm}, K^{\pm}, ho^{\pm}) \gamma$: Overview

 $\gg W^{\pm} \rightarrow (\pi^{\pm}, K^{\pm})\gamma$: One category

Dedicated track + single photon triggers (58% efficiency)

 $\gg W^{\pm} \rightarrow (\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}) \gamma$: Two categories

 \odot **Di-photon** triggers for τ + photon category (43% efficiency)

- ho reconstructed as 1-pronged au-lepton
- Some sensitivity with track + photon trigger
 - No π^0 reconstruction in track + photon category

Total Signal Efficiency				
$W^\pm \to \pi^\pm \gamma$	$W^\pm \to K^\pm \gamma$	$W^\pm \to \rho^\pm \gamma$		
5.0%	5.5%	0.5% (0.3%)		
Sig				

arXiv:2309.15887

R. Ward (University of Hamburg)

$W^\pm o (\pi^\pm, K^\pm, ho^\pm) \gamma$: Results

 \triangleright Binned likelihood fit in $m(\text{track}, \gamma)$ and $m(\tau, \gamma)$ 95% CL upper limits Branching fraction Expected $\times 10^{-6}$ Observed $\times 10^{-6}$ \circ Simultaneous fit in two categories: track + photon and τ + photon - $\mathcal{B}(W^{\pm} \to \pi^{\pm} \gamma)$ $1.2_{-0.3}^{+0.5}$ 1.9 $1.1_{-0.3}^{+0.4}$ >Suppress $Z \rightarrow e^+e^-$ background using TRT to identify e^\pm $\mathcal{B}(W^{\pm} \to K^{\pm} \gamma)$ 1.7 $\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$ $6.0^{+2.3}_{-1.7}$ 5.2 Remaining contribution modelled with simulation 0.25 GeV 002 0.25 Events / (0.25 GeV Data Data S+B Fit ATLAS ATLAS S+B Fit √s=13 TeV, 140 fb⁻¹ √s=13 TeV, 137 fb⁻¹ Multiiet Multijet $Z \rightarrow ee$ Events / (1 $W^{\pm} \rightarrow \rho^{\pm} \gamma [B=5 \times 10^{-5}]$ Track-photon SR Tau-photon SR $W^{\pm} \rightarrow \pi^{\pm} \gamma$ [B=5×10⁻⁵ $Z \rightarrow ee post-fit negative$ $W^{\pm} \rightarrow \rho^{\pm} \gamma$ [B=5×10⁻ 300 3 200 2 100 - Bkgd - Bkgd Bkgd $\pm 1\sigma$ Bkgd $\pm 1\sigma$ 50 200 . Data _200 Data -50105 65 60 110 60 70 75 80 85 90 95 65 70 100 100 105 110 arXiv:2309.15887 m(tau, photon) [GeV] m(track, photon) [GeV]

Summary of Exclusive $H/W/Z \rightarrow \mathcal{M}\gamma$ Search Results

ATL-PHYS-PUB-2023-004

$Z \rightarrow D^0 \gamma$ $Z \rightarrow K_s^0 \gamma$ $Z \rightarrow \omega \gamma$	ATLAS Preliminary √s = 13 TeV 	· · · · · · · · · · · · · · · · · · ·	■ 136 fb ⁻¹ arXiv:2402.18731 ■ 136 fb ⁻¹ arXiv:2402.18731 ■ 136 fb ⁻¹ arXiv:2402.18731 ■ 138292 ■ 14847 (2023) 138292	-
Ζ→ργ Ζ→φγ	-	area .	32.3 fb ⁻¹ JHEP 07 (2018) 127 35.6 fb ⁻¹ JHEP 07 (2018) 127	
Z→J/ψγ Z→ψ(2S)γ	Expected ± 1σ	2002	0 ^{139 fb⁻¹} EPJC 83 (2023) 781 139 fb ⁻¹ EPJC 83 (2023) 781	
Z→Ƴ(1S)γ Z→Ƴ(2S)γ	Observed M± 1σ		o 139 fb ⁻¹ EPJC 83 (2023) 781 a 139 fb ⁻¹ EPJC 83 (2023) 781	_
Z→Υ(3S)γ W [±] →π [±] γ	_		139 fb ⁻¹ EPJC 83 (2023) 781	_
$W^{\pm} \rightarrow \rho^{\pm} \gamma$	- %	Ž. Žž	arXiv:2309.15887 140 fb ⁻¹ arXiv:2309.15887	
νν-→κ-γ 10	⁻¹² 10 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻⁹	10 ⁻⁸ 10 ⁻⁷	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³] 10 [;]
	95% CL U	pper Limit	on Branching Fraction	on

Vector Boson Decays (with SM Expectations)

>ATLAS has the most stringent limits on most of these decay channels

R. Ward (University of Hamburg)

Prospects for Exclusive $H(Z) \rightarrow M\gamma$ Searches

ATL-PHYS-PUB-2015-043

 \geq Performed prospects study for $H(Z) \rightarrow J/\psi \gamma$ in 2015 based on Run 1 result

Expected to reach 15 × SM and 4 × SM sensitivity respectively with HL-LHC (simple assumptions)
 Room for improvement – but not far off!

Summary

>ATLAS Searches for exclusive $H/W/Z \rightarrow \mathcal{M}\gamma$ decays

- \circ *H* decays: magnitude and sign of quark couplings
- \circ Z decays: reference channels + tests of QCD factorisation
- \circ W decays: QCD factorisation + W mass measurements
- Dedicated triggers capture decays
- Non-parametric data-driven model for the backgrounds
 - Procedure: <u>JHEP 10 (2022) 001</u>

New $H(Z) \rightarrow Q\gamma$ and $H(Z) \rightarrow \omega\gamma + H \rightarrow K^*\gamma$ results published last year

 $>W^{\pm}$ → ($\pi^{\pm}, K^{\pm}, \rho^{\pm}$)γ recently public ○ Submitted to PRL

→ $D^*\gamma + Z \rightarrow (D^0, K_s^0)\gamma$ public this month! • Submitted to PLB

Summary of results: <u>ATL-PHYS-PUB-2023-004</u>

ADDITIONAL SLIDES
$H(Z) ightarrow (\phi, \rho) \gamma$: Signal Efficiency

Total Signal Efficiency					
Decay Channel Z Signal H Signal					
$\phi\gamma$	10%	17%			
ργ	2.4%	8%			

Larger photon and track $p_{\rm T}$ in H decays leads to larger signal efficiencies than for Z decays

JHEP 07 (2018) 127

$H(Z) \rightarrow (\phi, \rho)\gamma$: Opening Angles

$H(Z) ightarrow (\phi, \rho) \gamma$: Signal Acceptance

 \geq Meson $p_{\rm T}$ distributions for each signal decay

JHEP 07 (2018) 127

$H(Z) \rightarrow (\phi, \rho)\gamma$: Signal Modelling

- >Model boson mass distributions with analytical fits to simulated events
 - Higgs decays sum of two Gaussian distributions with a common mean
 - \circ Z decays (sum of two Voigtian distributions) \times efficiency factor
 - Voigtian: convolution of Gaussian (detector resolution) and Lorentz (Z width) distributions
 - Efficiency factor: accounts for turn-on in signal efficiency with Z mass
- >Same approach is applied across all exclusive $\mathcal{M}\gamma$ searches

25th March 2024 40

JHEP 07 (2018) 127

Non-Parametric Data Driven Model: Sampling Scheme 1

> Specific sampling scheme is based on studies of correlations between variables

Populate series of PDFs (histograms) using data in GR

Use these to sample pseudo-events

R. Ward (University of Hamburg)

Higgs and W/Z Boson Decays to a Meson and a Photon

Non-Parametric Data Driven Model: Sampling Scheme 2

>Important correlations are reproduced in pseudo-events generated with model

Correlations in Model

R. Ward (University of Hamburg)

Non-Parametric Data Driven Model: Demonstration

> Ultimately, only the modelling of the discriminant variable in the SR is important

VRs help with troubleshooting

(Plots are Pre-Fit)

	Minimum $p_{\rm T}(\phi)$ requirement	Maximum $I(\phi)$ requirement
GR	$35{ m GeV}$	Not applied
VR1	Varying from 40 to $47.2 \mathrm{GeV}$	Not applied
VR2	$35{ m GeV}$	0.5
\mathbf{SR}	Varying from 40 to $47.2 \mathrm{GeV}$	0.5

JHEP 10 (2022) 001

R. Ward (University of Hamburg)

Non-Parametric Data Driven Model: Shape Systematics

>Typically define several shape uncertainties to allow model to adapt to data

Generate alternate templates by modifying generation procedure

- Mass tilt: reweight mass distribution with a linear function
 - Distribution can adapt to tilts in ratio
- $ightarrow p_{\rm T}$ shift: shift generated photon $p_{\rm T}$ in GR
 - Distribution can shift higher/lower
- $\Delta \phi$ distortion: reweight generated $\Delta \phi$ in GR
 - Width of distribution can increase/decrease

JHEP 10 (2022) 001

Non-Parametric Data Driven Model: Additional Variables 1

> Non-discriminant variables can also be used in model validation

○ Less important as not used in fit – but can help troubleshoot issues

JHEP 10 (2022) 001

Non-Parametric Data Driven Model: Additional Variables 2

> Non-discriminant variables can also be used in model validation

○ Less important as not used in fit – but can help troubleshoot issues

JHEP 10 (2022) 001

$H(Z) \rightarrow (\phi, \rho)\gamma$: Background Modelling

> Background is multi-jet and γ +jet sources – treat inclusively

Use non-parametric data-driven background model

Define sideband regions for further validation

R. Ward (University of Hamburg)

$H(Z) ightarrow (\phi, ho) \gamma$: Background Validation

R. Ward (University of Hamburg)

Higgs and W/Z Boson Decays to a Meson and a Photon

$H(Z) ightarrow (\phi, ho) \gamma$: Sideband Background Validation

> Validation plots in $\phi\gamma$ sideband regions

$H(Z) ightarrow (\phi, \rho) \gamma$: Sideband Background Validation

> Validation plots in $\rho\gamma$ sideband regions

JHEP 07 (2018) 127

$H(Z) ightarrow (\phi, \rho) \gamma$: Results (Full Mass Range)

> Unbinned likelihood fit in $m(K^+K^-\gamma)$ and $m(\pi^+\pi^-\gamma)$

$H(Z) \rightarrow (\phi, \rho)\gamma$: Limits and Observed Events

> Unbinned likelihood fit in $m(K^+K^-\gamma)$ and $m(\pi^+\pi^-\gamma)$

	Observed yields (Mean expected background)					Expected si	ignal yields
	Mass range [GeV]					Н	Z
	All		81–101	120–130		$[\mathcal{B}=10^{-4}]$	$[\mathcal{B}=10^{-6}]$
$\phi\gamma$	12051	3364	(3500 ± 30)	1076	(1038 ± 9)	15.1 ± 1.5	98 ± 8
$\rho\gamma$	58702	12583	(12660 ± 60)	5473	(5450 ± 30)	14.3 ± 1.4	47 ± 4

Observed and Expected Events

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$	$4.2^{+1.8}_{-1.2}$	5.0
$\mathcal{B}\left(Z \to \phi \gamma\right) \left[\ 10^{-6} \ \right]$	$1.1^{+0.5}_{-0.3}$	0.7
$\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4} \ \right]$	$10.0^{+4.9}_{-2.8}$	10.4
$\mathcal{B}\left(Z\to\rho\gamma\right)\left[\begin{array}{c}10^{-6}\end{array}\right]$	$5.1^{+2.1}_{-1.4}$	4.0

Observed and Expected Limits

JHEP 07 (2018) 127

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Ancestral Sampling Scheme

>Important correlations differ compared to $H(Z) \rightarrow (\phi, \rho)\gamma$ searches: adapt sampling scheme

PLB 847 (2023) 138292

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Strategy

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Background Model

> Background is multi-jet and γ +jet sources – treat inclusively

 $\,\circ\,$ Use non-parametric data-driven background model

Background in Generation Region

PLB 847 (2023) 138292

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Background Validation

Higgs and W/Z Boson Decays to a Meson and a Photon

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Sideband Validation

> Unbinned likelihood fit in $m(K^{\pm}\pi^{\mp}\gamma)$ and $m(\pi^{+}\pi^{-}\pi^{0}\gamma)$

$H \to K^* \gamma$ and $H(Z) \to \omega \gamma$: Limits and Observed Events

> Unbinned likelihood fit in $m(K^{\pm}\pi^{\mp}\gamma)$ and $m(\pi^{+}\pi^{-}\pi^{0}\gamma)$

Channel	Mass range	Observed (Expected)	H signal	Z signal
	[GeV]	background	$\mathcal{B} = 10^{-4}$	$\mathcal{B} = 10^{-6}$
$H \rightarrow \omega \gamma$	115–135	686 (730 ± 17)	9 ± 1	_
$Z \to \omega \gamma$	80-100	388 (386 ± 16)	_	18 ± 2
$H \to K^* \gamma$	120-130	$9526 \ (9630 \pm 50)$	53 ± 4	_

Observed and Expected Events

Channel	95% CL upper limit			
	Expected	Observed		
$H \rightarrow \omega \gamma \; [10^{-4}]$	$10.4^{+3.8}_{-2.9}$	5.5		
$Z \to \omega \gamma \; [10^{-6}]$	$4.7^{+2.0}_{-1.3}$	3.9		
$H \to K^* \gamma \ [10^{-4}]$	$3.7^{+1.5}_{-1.0}$	2.2		

Observed and Expected Limits

PLB 847 (2023) 138292

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Signal Efficiency

$H \rightarrow D^*\gamma \& Z \rightarrow (D^0, K^0_s)\gamma$: Signal Modelling

>Model with analytical fits to simulated events

• Higgs mass - sum of two Gaussian distributions with a common mean

- $\circ Z$ mass Voigtian distribution imes efficiency factor
 - Voigtian: convolution of Gaussian (detector resolution) and Lorentz (Z width) distributions
 - Efficiency factor: accounts for turn-on in signal efficiency with Z mass

arXiv:2402.18731 25th March 2024 60

1.9 - 2.3%

Resolution

$H \rightarrow D^*\gamma \& Z \rightarrow (D^0, K^0_s)\gamma$: Sampling Scheme

>Ancestral sampling scheme used to produce pseudo-events

arXiv:2402.18731

$H \rightarrow D^*\gamma \& Z \rightarrow (D^0, K^0_s)\gamma$: Background Generation

> Data in generation region is used to produce model

arXiv:2402.18731

$H ightarrow D^* \gamma \& Z ightarrow (D^0, K_s^0) \gamma$: Background Validation

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Background Systematics

 \blacktriangleright Freedom via shape systematics: mass-tilt, $\Delta \phi$ -distortion, $p_{\rm T}$ -shift

arXiv:2402.18731

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Background Control Regions

> Define orthogonal selections (with analogous backgrounds) to validate model procedure

arXiv:2402.18731

$H \rightarrow D^* \gamma \& Z \rightarrow (D^0, K^0_s) \gamma$: Results Tables

Channel	M	ass range	Observed (Expected)		ted)	H si	gnal	Ζ	signal		
		[GeV]	background		background			\mathcal{B} =	10^{-3}	${\mathcal B}$	$= 10^{-6}$
$H \rightarrow D^*$	γ 1	16–126	$203 \ (214.8 \pm 5.5)$		25.4 :	± 2.0		_			
$Z \rightarrow D^0$	γ	86–96	215	(206 ± 14)	·) —		-	10.	$.3 \pm 0.7$		
$Z \to K_s^0 Z$	γ	86–96	21 (2	19.5 ± 2.0)			4.	$.2 \pm 0.4$		
Observed and expected events											
95% CL upper limits											
Branching Fraction					$\sigma \times \mathcal{E}$	8 [fb]					
Char	nnel	Observed	Ex	pected	Obser	rved	Expect	ted			
H -	$\rightarrow D^*\gamma$	1.0×10^{-3}	$1.2^{+0.}_{-0}$	$^{5}_{.3} \times 10^{-3}$	5	8	68^{+2}_{-1}	28 19			
$Z \rightarrow$	$\sim D^0 \gamma$	4.0×10^{-6}	3.4^{+1}_{-1}	$^{4}_{.0} \times 10^{-6}$	23.	5	200^{+8}_{-5}	32 56			
$Z \rightarrow$	$\sim K_s^0 \gamma$	3.1×10^{-6}	3.0^{+1}_{-0}	$^{3}_{.8} \times 10^{-6}$	18	5	176^{+7}_{-2}	7 49			

Observed and expected limits

Higgs and W/Z Boson Decays to a Meson and a Photon

$Z \rightarrow K_s^0 \gamma$: Trigger Efficiency

 \succ Potential to improve K_s^0 trigger by triggering on displaced vertices

arXiv:2402.18731

$H(Z) \rightarrow Q\gamma$: Selection

>Selection defined largely by trigger thresholds, geometry constraints, and recommended working points

• Variable $p_{T}^{\mu^{+}\mu^{-}}$ threshold optimised based on S/\sqrt{B} near H and Z signal peaks

Photon Selection:	Meson Selection:
• p_{T}^{γ} > 35 GeV	• $p_{\rm T}^{\rm lead} > 18 {\rm GeV}; p_{\rm T}^{\rm sublead} > 3 {\rm GeV}$
$ \eta^{\gamma} < 2.37$ and outside transition region	$ \eta^{\mu} < 2.5$
$1.37 < \eta^{\gamma} < 1.52$	•Oppositely charged muons
•Tight quality	•Medium quality
$\cdot \Delta \phi(Q,\gamma) > \pi/2$	• $m(\mu^+\mu^-)$ near meson mass
•Photon isolation	•Transverse decay length significance $ L_{\chi\gamma}/\sigma_{L_{\chi\gamma}} < 3$
Red: Not applied in GR	• $p_{\rm T}(\mu^+\mu^-)$ cut varies with $m(\mu^+\mu^-\gamma)$ •Muon isolation

Quarkonium	Composition	Mass [GeV]	Width $[keV]$	$\mathcal{B}(Q \to \mu^+ \mu^-)$
J/ψ	$c\bar{c}$	3.10	92.9 ± 2.8	$(5.96 \pm 0.03)\%$
$\psi(2S)$	$c\bar{c}$	3.69	294.0 ± 8.0	$(0.80 \pm 0.06)\%$
$\Upsilon(1S)$	$b\overline{b}$	9.46	54.0 ± 1.3	$(2.48 \pm 0.05)\%$
$\Upsilon(2S)$	$b\overline{b}$	10.02	32.0 ± 2.6	$(1.93 \pm 0.17)\%$
$\Upsilon(3S)$	$b\bar{b}$	10.36	20.3 ± 1.9	$(2.18 \pm 0.21)\%$

EPJC 83 (2023) 781

$H(Z) \rightarrow Q\gamma$: Signal Modelling

Resolution

 $\Upsilon(nS)\gamma$

13%

21%

$H(Z) \rightarrow Q\gamma$: Signal Efficiency

Senerator $p_{\rm T}$ plots for $\psi(2S)$ channels

R. Ward (University of Hamburg)

$H(Z) \rightarrow Q\gamma$: Quarkonium Reconstruction

>Split $\Upsilon(nS)$ into Barrel (B) and Endcap (EC) categories

Improved resolution in barrel helps resolve each state

≥ Reject displaced vertices to avoid $b \rightarrow \psi(nS)$

• Quarkonium states – Gaussian; combinatoric – straight line

Meson Reconstruction in GR

$H(Z) \rightarrow Q\gamma$: Signal Modelling and Resolution

$H(Z) \rightarrow Q\gamma$: Signal Systematic Uncertainties

> Consider relevant uncertainties on the total signal yield

• Nuisance parameters with standard Gaussian constraints in maximum likelihood fit

Source of systematic uncertainty	Signal yield uncertainty					
Source of systematic uncertainty	$H \to \psi(nS) \gamma$	$H \to \Upsilon(nS) \gamma$	$Z \to \psi(nS) \gamma$	$Z \to \Upsilon(nS) \gamma$		
Total cross section	5.8%	5.8%	2.9%	2.9%		
Integrated luminosity	1.7%	1.7%	1.7%	1.7%		
Signal acceptance	1.8%	1.8%	1.0%	1.0%		
Muon reconstruction	2.3%	2.2%	2.4%	2.4%		
Photon identification	1.7%	1.7%	1.9%	1.9%		
Pile-up uncertainty	0.8%	0.7%	1.1%	1.1%		
Trigger efficiency	0.7%	0.7%	0.8%	0.8%		
Photon energy scale	0.1%	0.1%	0.2%	0.2%		
Muon momentum scale	0.1%	0.1%	0.5%	0.2%		
Muon momentum resolution (ID)	<0.01%	0.01%	0.06%	0.02%		
Muon momentum resolution (MS)	0.02%	0.01%	0.04%	0.01%		

$H(Z) \rightarrow Q\gamma$: Ancestral Sampling Scheme

Subtract exclusive background events from data in GR before generating inclusive model

$H(Z) \rightarrow Q\gamma$: Background Validation Regions

> Define three VRs for $Q\gamma$

Region		$p_{\mathrm{T}}^{\mu\mu}$	Photon Isolation	<i>Q</i> Isolation
Generation Region	(GR)	> 30 GeV	Relaxed	Relaxed
Validation Region 1	(VR1)	Full	Relaxed	Relaxed
Validation Region 2	(VR2)	> 30 GeV	Relaxed	Full
Validation Region 3	(VR3)	> 30 GeV	Full	Relaxed
Signal Region	(SR)	Full	Full	Full

Region Definitions

$H(Z) \rightarrow Q\gamma$: Background Validation and Systematic Uncertainties

$H(Z) \rightarrow \psi(nS)\gamma$: Inclusive Fit

> Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-)$, $m(\mu^+\mu^-\gamma)$

• Discriminates between **all** signal and background contributions

 $\gg \psi(nS)\gamma$ analysis fit is performed in a single category

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Inclusive Fit

> Use **2D** unbinned likelihood fit in $m(\mu^+\mu^-)$, $m(\mu^+\mu^-\gamma)$

• Discriminates between **all** signal and background contributions

 $\succ \Upsilon(nS)\gamma$ analysis fit is performed simultaneously in the barrel and endcap categories

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Fit in Separate B and EC Categories

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Barrel Category Projections

R. Ward (University of Hamburg)

$H(Z) \rightarrow \Upsilon(nS)\gamma$: Endcap Category Projections

R. Ward (University of Hamburg)

$H(Z) \rightarrow Q\gamma$: Limits and Observed Events

		Observed (expected) background			Z signal	H signal	
Category	$m_{\mu^+\mu^-}$ range	$m_{\mu^+\mu^-\gamma}$ range [GeV]			for	for	
	[GeV]		86–96		122–128	$\mathcal{B} = 10^{-6}$	$\mathcal{B} = 10^{-3}$
Inclusive	2.9–3.3	198	(185.6 ± 5.9)	61	(59.1 ± 1.6)	49.3 ± 2.4	87.8 ± 6.1
Inclusive	3.5-3.9	83	(82.5 ± 4.0)	21	(22.9 ± 0.9)	6.5 ± 0.3	11.8 ± 0.8
Barrel	9.0-9.8	125	(125.3 ± 4.7)	12	(11.6 ± 0.6)	11.4 ± 0.6	20.2 ± 1.4
Barrel	9.6-10.4	118	(121.9 ± 4.6)	14	(10.7 ± 0.6)	8.8 ± 0.4	15.3 ± 1.1
Barrel	9.9–10.7	102	(119.9 ± 4.5)	11	(10.2 ± 0.6)	10.1 ± 0.5	17.4 ± 1.2
Endcap	9.0-9.8	133	(162.9 ± 5.7)	16	(13.6 ± 0.7)	15.5 ± 0.8	20.5 ± 1.4
Endcap	9.6-10.4	150	(157.1 ± 5.6)	11	(11.7 ± 0.5)	11.7 ± 0.6	15.8 ± 1.1
Endcap	9.9–10.7	171	(156.7 ± 5.8)	7	(11.4 ± 0.6)	13.5 ± 0.7	17.6 ± 1.2

Observed and Expected Events

	95% CL upper limits								
		Branchin	$\sigma \times \mathcal{B}$						
Decay	Higgs bose	on [10 ⁻⁴]	Z boson [10 ⁻⁶]		Higgs boson [fb]	Z boson [fb]			
channel	Expected	Observed	Expected	Observed	Observed	Observed			
$J/\psi \gamma$	$1.8^{+0.8}_{-0.5}$	2.0	$0.7^{+0.3}_{-0.2}$	1.2	11	69			
$\psi(2S) \gamma$	$8.1^{+3.6}_{-2.3}$	10.5	$3.0^{+1.3}_{-0.8}$	2.4	58	142			
$\Upsilon(1S) \gamma$	$2.7^{+1.2}_{-0.8}$	2.5	$1.6^{+0.6}_{-0.4}$	1.1	14	62			
$\Upsilon(2S) \gamma$	$3.4^{+1.5}_{-1.0}$	4.2	$2.1^{+0.8}_{-0.6}$	1.3	24	74			
$\Upsilon(3S) \gamma$	$3.0^{+1.3}_{-0.8}$	3.4	$1.9^{+0.8}_{-0.5}$	2.4	19	143			

Observed and Expected Limits

R. Ward (University of Hamburg)

$H(Z) \rightarrow Q\gamma$: CMS Results

CMS-PAS-SMP-22-012

$W^\pm ightarrow (\pi^\pm, K^\pm, ho^\pm) \gamma$: Strategy

arXiv:2309.15887

 \circ Suppress using TRT to identify e^{\pm}

$W^{\pm} ightarrow (\pi^{\pm}, K^{\pm}, ho^{\pm}) \gamma$: Signal Modelling

Model with analytical fits to simulated events

 $\odot W \rightarrow (\pi^{\pm}, K^{\pm})\gamma$ shapes are identical

 $\circ W \rightarrow \rho^{\pm} \gamma$ in track + photon category is modelled with smoothed template from simulation

arXiv:2309.15887

$W^{\pm} ightarrow (\pi^{\pm}, K^{\pm}, \rho^{\pm}) \gamma$: Background Sampling Schemes

$W^\pm o (\pi^\pm, K^\pm, ho^\pm) \gamma$: Background Validation

 $W^{\pm}
ightarrow (\pi^{\pm}, K^{\pm},
ho^{\pm}) \gamma$: Results 2

