
Gaudi config for ILD 
reconstruction

The technical bits

Thomas Madlener, Feb 15 2024

1



Reminder: Marlin steering files basics

● Several sections
○ execute and global are 

required
○ Others are optional but can 

also be repeated
○ Global section defines some 

global config parameters
○ Execute section defines the 

order of the processors

2



Reminder: Marlin steering file constants

● constants sections can be used to define arbitrary constants
● Constants can be referred to in many places in Marlin steering files

○ Other constants
○ Include references

3



ILDConfig organization of steering files

● Top level MarlinStdReco.xml
○ Includes other steering and calibration files dynamically

● Several subfolders with dedicated configuration for parts of the reconstruction
○ Tracking, Calorimeters, ParticleFlow, HighLevelReco

● Detector dependent calibration files
○ Define geometry and technology specific constants

● CMS Energy dependent configuration files
● Some minor cross-referencing

○ Some calibration depends on geometry and energy

4



Reminder: convertMarlinToGaudi.py

● Converter script that takes a parsed Marlin steering file as input and that 
produces a Gaudi python options file

○ All includes and some of the constants are resolved already
○ Constants are dropped into a CONSTANTS dictionary
○ Not all constants are resolved
○ Recursive resolution of constants in constants
○ Python formatting from dictionary for replacement in parameters

● Produces one large python script with everything (~1300 LoC)

5



Required features from python

● Dynamic import of code
○ Filenames to import from depend on calibration constants

● Injection of global state during import
○ Configuration parameters of algorithms depend on calibration constants
○ Algorithm sequences to import and run depend on calibration constants (e.g. Calorimeter 

technology)
● Calibration constants themselves are dynamic

○ Effectively a large nested dictionary where we try to remove one level of nesting by splitting it 
into different files

6



Dynamically import code in python

1. Using compile and exec
○ Effectively loading the file verbatim into the current interpreter session
○ compile not strictly necessary but errors are nicer

2. Using importlib and related utilities
○ Effectively as if importing a module but using the path to the file (and arbitrary file endings)

7



Using compile and exec

8



Using importlib and related utils
Thomas +

9



ILDReconstruction.py features

● argparse for argument parsing
○ Allows to catch some mistakes very early (e.g. 

non-existent calibration, …)
● Automatic input file format detection

○ Choose correct reader and inject potentially 
necessary conversion

● EDM4hep output by default
○ Effectively REC
○ LCIO output can be added via cl argos

● Some new conventions on how to 
modularize configuration

10



New calibration

● Mirrored structure to existing XML 
calibration files

○ Converted using converter script
● Dynamically imported into 

ILDReconstruction.py
○ Before nested constants are parsed!

● Exactly the same mechanism for CMS 
energy dependent config

11



Configuring standard sequences

● Converted existing sequences 
(groups) from XML to python

○ Filenames: s/.xml/.py/
● All algorithms go into a python 

list
○ New convention: The name of this 

list has to be the same as the 
filename (without extension) + 
Sequence

● Provide helper to make dynamic 
inclusion simple

12

TrackingDigi.py

ILDReconstruction.py



Just one more wrapper, I promise

● Dynamic import of file from provided sequence name
○ Use previously defined import_from and inject necessary global calibration / config state

● Sequence list name is determined by filename
○ Dynamically get that from imported module

● Extend the algorithm list with new algorithms

13



Summary

● k4FWCore#178 for python helpers
○ load_file and import_from

● ILDConfig#137 for new Gaudi based configuration
● First version of modular Gaudi configuration for ILD standard reco

○ Possible to dynamically configure algorithms depending on calibration constants, etc..
○ Keep all existing functionality (🤞)

● ChatGPT is pretty useful
○ import_from took me 10 mins (probably ~1 hour without)
○ Generated documentation is usable with minor adjustments

14

https://github.com/key4hep/k4FWCore/pull/178
https://github.com/iLCSoft/ILDConfig/pull/137

