

Sebastian Schulz on behalf of WPs T5 and P7 and All Other Involved Parties Progress Review Meeting, 8 March 2024

Motivation

Improvement of Temporal Resolution in User Experiments

Linac/BAM Correction and LAM Feedback

Stabilisation of Laser Pulse Arrival Time at the Actual Experiment

Status Quo

Overview of the FLASH Femtosecond Synchronisation System Before the Shutdown

FLASH2020+ Femtosecond Synchronisation "2025+"

System Topology with Main and Sub-Synchronisation Laboratories

Sub-Synchronisation Lab

Building 49, New Rooms 008c, 008d, 008e

- c. 40 m² (separated into three rooms)
- precision A/C in optics area
 - 0.1 degC, RH ±1%
 - low acoustic & vibrational noise, low volume flow air exhaust for optical table
 - suspended ceiling (optics area ⇒ smaller volume)
- EMI/grounding (central point)
- double/raised floor (electronics + optics)
- network/IT (fibre-optical, dedicated switch, 2×10 Gbit uplink for DAQ)
- synchronization (PMF) and timing fibres (SMF)
- 1.3 GHz reference from MO

Sub-Synchronisation Lab

Planned Installations

- optics area, c. 25 m²
 - ▲ main optical table: lasers, LSU, ODLs, user delay, diagnostic
 - req. ultra-low CTE, lowest influence on humidity

Fibre Link Connections

Clients and Sub-Systems – A Somewhat Final Draft without MEMS

client (reference: main*)	fibre exists	action
NEPAL-F1	yes	none
NEPAL-F2	yes	none
heater laser	yes	none
RF re-sync. ACC139	yes	none
BAM UBC1	yes	none
BAM DBC1	yes	none
RF re-sync. ACC23	yes	none
BAM UBC2	yes	none
BAM DBC2	yes	none
RF re-sync. ACC45	yes	none
BAM FL1LOLA	maybe	re-route/re-use (?)
BAM FL1RADT	no	new
seed laser (28M)	yes	re-route/re-use
LAM seed laser (tunnel)	partly	re-route/re-use (?)
BAM FL2SEED5	yes	re-route/re-use
laser sub. reference "SLO FL1"	partly	re-route/re-use
laser sub. reference "SLO FL2"	partly	re-route/re-use

client (reference: subsidiary)	fibre exists	action
PiGLET laser	no	new
LAM at PG (VIS-IR)	no	new
FL1 PP laser	no	new
LAM FL11	no	new
FL1 THz exp't laser	no	new
FL2 PP laser	partly	re-route/re-use
LAM FL23	no	new
LAM FL24	no	new
LAM FL26	no	new
TRANSALP/ErUM Pro laser	partly	re-route/re-use
BAM FL1LOLA	partly	re-route/re-use
BAM FL1RADT	no	new
seed laser (28M)	no	new
LAM seed laser (tunnel)	no	new
BAM FL2SEED5	partly	re-route/re-use
laser main sync. lab	partly	re-route/re-use
FL1 and FL2 exp't (e.g. PAM)	no	new

Fibre Installation

Re-route and Re-use?

work in progress

- many fibres via extraction to "UVT" (28i)
 - can/need potentially be re-routed through extraction
- fibres to 28g probably can be re-routed as well
- BAM 1SFELC (FL1LOLA) can probably be re-used
- new fibres for LAMs and exp't in FL1 and FL2
- ideally many spare "speedpipes", even to 49d
- all "accelerator systems and lasers" from main
- PP, experiment lasers and LAMs from sub
- best utilisation, most flexible solution
- re-using PMF saves real money (17 USD/m)

User Delay and Feedback Concept

Shifting Time Between Optical Laser and FEL

- in-house built 5-ns ODL not optimised for continuous high-precision scans
 - designed for occasional movement for link stabilisation
 - however, presently used at FLASH and the EuXFEL, partly equipped with position encoder
- ODL shall not be installed at the MODs
- move ODLs (partly) into synchronization lab
 - scan should neither affect other users and client systems nor the accelerator operation (e.g. BAM)
 - small, quiet ODL for user delay scans?
- user scan ranges: typically few-10 ps
- constraints automation & control?
 - simultaneous operation of two MODs with LAMs
 - simultaneous experiments at FLASH1/FLASH2

er Delay and Feedback Concept

MEMS vs. Non-MEMS Solution at FLASH

- dedicated fibre link per client
- more flexibility
- better performance
- easier to extend and upgrade
- 2x4 MEMS quite expensive
 - but, alas, 4-2 ODLs and drivers as well...
- removes "a layer" of complexity in automation
 - and no further, additional hardware (like Beckhoff)
- envisioned feature: feedback actuator for laser system drift compensation in sync. system

Optical Delay Line Selection

Induced Timing Error – Example of PI Inertia Driven Stage

Laser-to-Laser Lock

Subsidiary onto Main Laser Oscillator

- laser-to-link (over 4 km of fibre): 1 fs rms
- lab environment (over 1 m free-space): **0.2 fs** rms

Advanced Laser Pulse Arrival Time Monitors

One of the Challenges: Coverage of a Large Spectral Range for User Experiments

- fundamentals: 800 nm and 1030 nm
- SHG, THG, FHG: 400 nm, 266 nm, **515 nm**, 343 nm, 258 nm
- NOPA, SFG, DFG, e.g. with Topas:

- signal separation (dichroic mirrors)?
- non-collinear phase matching to the rescue?

Experimental Demonstration

Changing from 1030 nm to 515 nm Possible by Just Tilting the Crystal

SFG of 1550 nm with 515 nm (387 nm)

- progress on VIS-IR OXC
 - automation
- MSK, ARD, HELPFEL budget
- EuXFEL funding

Wrap-up

Progress Towards a Substantially Extended Synchronisation Infrastructure for FLASH

- sub-synchronisation laboratory planning and realisation...
 - it's really converging!
 - proven concept from EuXFEL with differences
- fibre link installation drafted
 - re-use existing fibres
 - "distribution" between main and sub-synchronisation in a most flexible way
- revisited user delay and laser feedback concept
 - component selection, together with EuXFEL LAM project
- advances in laser-to-laser synchronisation (MLO-SLO)
- advances in laser pulse arrival time measurements
- LAM measurement campaign at FL23

Contact

Deutsches Elektronen-

Synchrotron DESY

Dr. Sebastian Schulz

Team Leader Laser-based Synchronisation Systems

www.desy.de +49 40 89981782

sebastian.schulz@desy.de

Supporting Material

Optical Design

In progress...

Non-collinear cross-correlator

- Demonstrated at 1030 nm, inclusive laser locking.
 - However high link and laser pulse energies in the setup
- Proof-of-principle: validated when 515 nm, 343 nm will be tested

Influence of dispersion – ex. With "standard" L2L setup

MPC measurement (lab)

Obvious, but...

-100

-200

-400 -300

Take care!

Time [fs]

- Bandwidth of optics for special cases like MPC, HCF broadening, ...
- Optics in reflexion