
Leveraging the Jupyter ecosystem for cross-platform
deployment of scientific applications

• DESY

• Photon Science

• IDAF

• Maxwell

• Jupyter

• Open Data

Frank Schlünzen – DESY IT
26.02.2024

DESY

IDAF/Maxwell (DESY)
Frontier (ORNL)
Juwels (FZJ)

IDAF/NAF&Grid IDAF/NAF&Grid

IDAF/Maxwell (DESY)

Interdisciplinary Data Analysis Facility (IDAF)

NAF&Grid Maxwell

Grid-
Farm

NAF-
Farm

Grid-CE

API

Portal

ssh, fastx, jhubssh, fastx, jhub

Interdisciplinary Data Analysis Facility (IDAF)

Interdisciplinary Data Analysis Facility (IDAF)

Maxwell

API

Portal

ssh, fastx, jhub

Interdisciplinary Data Analysis Facility (IDAF)

 Infiniband
 Cluster filesystem
 SLURM scheduler
 4PFlops peak

HPC’ish Less HPC’ish
 Very heterogeneous
 OS migration
 Atypical workload
 Atypical use cases (real time)
 LOTS of partitions
 Non-expert users

Maxwell - Portal

Maxwell - Portal

Maxwell

API

Portal

ssh, fastx, jhub

SLURM Rest API
 JWT but without control
 Revoke secret → invalidate all token

Portal serves as token provider
 Revoke indivual token
 Impose JWT lifetime limits
 Allow token delegation

Maxwell - Portal

Maxwell

API

Portal

ssh, fastx, jhub

Grafana REST Api
 Only access from individual hosts
 No restrictions – host can see all metrics

Portal+WebJobs serve as Grafana API
 Limit access to metrics of interest
 User can see only own metrics
 Admin can see it all

Maxwell - WebJobs

Maxwell - WebJobs

Maxwell – JupyterHub - ordinary

Select allowed partitions/reservations

Select environment

Select jupyter look & feel

Submit batch job

Show available resources

Maxwell – JupyterHub - ordinary

Submit batch job

 Modified batch-spawner (comet-spawner)
 sudo launches batch-job on behalf of user
 Hard limits on runtime

 8h for dedicated partitions
 7d for jhub partition

 jhub nodes can run 48 concurrent jupyter jobs
 CPU load ~0
 Memory load 50-90%

 Extremely popular (sigh)

cpu
usage

memory
usage

Maxwell – JupyterHub - ordinary

Maxwell – JupyterHub – less ordinary

JupyterHub is quite useful beyond running jupyter notebooks

 Comes with user and session management

 Can proxy all kind of (web)-services

 Quite flexible

 Quite powerful in combination with frameworks like streamlit, dash, (genie)

 Started to play → serious fun (N.Rahmlow)

 see what’s feasible and what’s not

Maxwell – JupyterHub – less ordinary

General purpose

 Federated login and MFA with keycloak
 maxapp-spawner and custom templates compose landing page
 sbatch scriplet:

 jhsingle-native-proxy […] -- streamlit run maxwell.py […]
 SLURM takes care of scheduling
 Jhub takes care of users & session & proxying

 Everything runs entirely in user space afterwards
 Full access to all my data and resources
 No need to cope with e.g. extended ACLs

 Pure python code
 Very simple to do

General purpose

Maxwell – JupyterHub – less ordinary

General purpose

NoVNC EL9

Debian + CrystFEL

HDF5 Viewer
SciCat Frontend

Julia apps

mlExchange

Maxwell – JupyterHub – less ordinary

 SciCat frontend – ~5 lines of python code

config = configparser.ConfigParser()
config.read(config_file)
scicat=dict(config.items('scicat'))
response = requests.get(f'{scicat["baseurl"]}/Proposals',

headers={"accept" : "application/json", 'Authorization': f'Bearer {token}'})

dffull = pd.DataFrame(response.json())

Maxwell – JupyterHub – less ordinary

 Fetch tokens from encrypted file
 Portal token to generate SLURM tokens → required to submit batch jobs
 Tokens for max-jhub and naf-jhub
 Tokens for FastX graphical sessions

 Not extremely convenient but simple enough and sufficiently secure

Maxwell – JupyterHub – less ordinary

 Just some basics about “my resources”

Maxwell – JupyterHub – less ordinary

 Job performance → Same mechanism as JobView using the max-portal API to pull grafana metrics

Maxwell – JupyterHub – less ordinary

 Job Composer using templates – keep in mind our experiences users

Maxwell – JupyterHub – less ordinary

 View job output – plots generated on the fly

Maxwell – JupyterHub – less ordinary

 3D view of e.g. PDB files generated from AlphaFold templated batch jobs

Maxwell – JupyterHub – less ordinary

 3rd party applications launched from within the maxwell batch-job running the jhub proxied streamlit app
 The NAF-button launches a jupyter server via naf-jhub, which initiates a htcondor job on the NAF

Maxwell – Not-a-binder

BinderHub

 allows you to BUILD and REGISTER a Docker image from a Git repository

 connect with JupyterHub

 create a public IP address

 interact with the code and environment within a live JupyterHub instance

Without any authentication

Maxwell – Not-a-binder

BinderHub

 allows you to BUILD and REGISTER a Docker image from a Git repository

 connect with JupyterHub

 create a public IP address

 interact with the code and environment within a live JupyterHub instance

Without any authentication

Not exactly what we need/want on the Maxwell cluster

 … but a service to demonstrate public workflows/notebooks would still be nice

 Implemented a streamlit-app as a systemd service

 Runs in a container under a service account behind a proxy
 Quite secure setup
 Uses the „solaris“ partition(s)

Maxwell – Not-a-binder

Pulling dataset from scicat instance (https://public-data.desy.de)

Maxwell – Not-a-binder

Pulling datasets and actions from json (FLASH data)

Maxwell – Not-a-binder

 Automatically spawn notebook

 No authentication needed

 Runs a container as jovyan user

 Uses JupyterHub REST API

 Separate home per session

Maxwell – Not-a-binder

 Docker running headless VNC with pre-installed CrystFEL application

 Uses tollerort.desy.de (harbor container registry) to pull the image

 Bind-mounting /opendata

 Currently only in DESY Network (opening port 443 and websocket proxying still need to be done)

Credits

 Axel Wichmann: max-portal, webavail partition monitoring, API
 Neele Rahmlow: WebJobs and most of the streamlit apps

