

Performance of CMS Inner Tracker pixel assemblies for the Phase-2 Upgrade

<u>B. Raciti</u> | SiDet R&D Meeting – 26th Mar. 2024, DESY

CMS Inner Tracker upgrade for HL-LHC

The High-Luminosity Large Hadron Collider (HL-LHC) is an upgraded version of the LHC^[1], foreseen to begin in 2028 onwards.

In the **HL-LHC** phase:

Luminosity: 7.5 x 10 ³⁴ cm ⁻² s ⁻¹	Integrated luminosity: 3000 – 4000 fb ⁻¹	Pile-up: <μ> = 200	$\phi_{ m max}$ planar modules = 1 × 10 ¹⁶ n _{eq} cm ⁻²
---	---	--------------------	--

During the Long-Shutdown 3:

- **replacement** of CMS Outer (OT) and Inner Tracker (IT)
- IT pixel sensors: new readout chip (RD53C_CMS) and sensor design

Stringent requirements for beginning \rightarrow end of operation

CMS Inner Tracker upgrade for HL-LHC

FSP CMS Erforschung von Universum und Materie

The Inner Tracker is divided into three sections: **barrel**, **forward-cap** and **end-cap**.

In total, it will feature:

- 1156 1x2 pixel modules \rightarrow 2 readout-chips per module
- 2736 2x2 pixel modules \rightarrow 4 readout-chips per module

500 TEPX 2x2 modules will be glued, wire-bonded and tested in Hamburg.

Hybrid pixel modules

In hybrid pixel detectors the **sensor** and the **readout chip** are individually optimized and joined with bump-bonds.

Readout chip developed by the **RD53 Collaboration** and is implemented in a **65 nm CMOS technology**:

100 µm

- RD53A \rightarrow half-size pixel chip demonstrator with 3 different front-ends
- RD53B_CMS → full-size prototype chip

ACTIVE THICKNESS: 150 µm

n⁺ pp⁺

• RD53C _CMS \rightarrow production chip

CMS chose the linear front-end design for the readout chip.

Experimental setup at DESY II

DESY test beam facility: e⁻/e⁺ beam with energies ranging from 1 to 6 GeV (data taken at 5.2 GeV)

Setup:

- tracking: six Mimosa26 MAPS
- trigger: two upstream scintillators
- timing: reference module RD53B_CMS (50x50 μm²)
- **DUT** located after the first three planes

Inhomogeneously irradiated modules

Erforschung von Universum und Materie

Two modules irradiated at CFRN PS \rightarrow non-uniform fluence across columns

Fluence range: $\phi_{eq} = 3 \times 10^{15} n_{eq} \text{cm}^{-2} \rightarrow 1 \times 10^{16} n_{eq} \text{cm}^{-2}$

Aim: study $\varepsilon_{\rm hit}$, α , $\varepsilon_{\rm hit}$ × α and $\sigma_{\rm hit}$ as a function of the equivalent fluence $\phi_{\rm ea}$

Types of **measurements**:

→ bias scan: fixed angle wrt. beam, threshold | change bias voltage \rightarrow angle scan: fixed bias voltage, threshold | change angle wrt. beam \rightarrow threshold scan: fixed angle wrt. beam, bias voltage | change threshold

The software (*Corryvreckan*^[1]) used for the analysis of test beam data:

aligns all planes and fits particle tracks from recorded hits

Requirements for the **efficiency of the assembly** at vertical incidence at -20° C for **fresh** modules:

 $\epsilon_{\rm hit}$ x α > 99% and $V_{\rm bias}$ = $V_{\rm depl}$ + 50 V = 120 V

< 1% masked pixels and avg. noise occupancy < 10^{-6}

Before irradiation:

• $\varepsilon_{\text{hit}} \propto \alpha > 99\%$ for $V_{\text{bias}} \ge 0 \text{ V}$ for all thresholds and met requirement for masked pixels

Requirements for the **efficiency of the assembly** at vertical incidence at -20° C for **irradiated** modules:

After irradiation:

- plots show a section of the module tuned to a threshold = 1000 e-
- $\varepsilon_{hit} \ge \alpha > 99\%$ for $V_{bias} \ge 300 \lor$ and $\varepsilon_{hit} \ge \alpha > 98\%$ for $V_{bias} \ge 400 \lor$ and met requirement for masked pixels for $\phi_{eq} < 1 \times 10^{16} n_{eq} cm^{-2}$

Requirements for the **efficiency of the assembly** at vertical incidence at -20° C for **irradiated** modules:

After irradiation:

- plots show a section of the module irradiated to $\phi_{
 m eq} = 1 imes 10^{16} \ {
 m n}_{
 m eq} {
 m cm}^{-2}$
- $\varepsilon_{hit} \ge \alpha > 98\%$ for $V_{bias} \ge 400 V$ (thresholds = 1000 e-, 1200 e-) and $V_{bias} \ge 500 V$ (threshold =1500 e-)

SiDet R&D Meeting | Bianca Raciti | 26th Mar. 2024

Requirements for the **efficiency of the assembly** at vertical incidence at -20° C for **irradiated** modules:

After irradiation:

- plots show a section of the module irradiated to $\phi_{
 m eq} = 1 imes 10^{16} \ {
 m n}_{
 m eq} {
 m cm}^{-2}$
- $\varepsilon_{hit} \ge \alpha > 98\%$ for $V_{bias} \ge 400 V$ (thresholds = 1000 e-, 1200 e-) and $V_{bias} \ge 500 V$ (threshold =1500 e-)

SiDet R&D Meeting | Bianca Raciti | 26th Mar. 2024

Single hit resolution $\sigma_{\rm hit}$

 $\Delta x = x_{track}^{100} - x_{hit}^{200} [\mu m]$

Single hit resolution $\sigma_{\rm hit}$

SiDet R&D Meeting | Bianca Raciti | 26th Mar. 2024

resolution for 25 μ m pitch [س 12.5 م. 10.0 م. 10.0 $\Phi_{eq} = 0.8 \times 10^{16} \text{ cm}^{-2}$ $\Phi_{eq} = 0.4 \times 10^{16} \text{ cm}^{-2}$ non-irradiated 7.5 WOL 5.0 Private 2.5 0.0 Cluster^{r - Φ} t c c 8 10 12 14 16 0 2 6 θ_{turn} [deg]

Single hit resolution $\sigma_{\rm hit}$

25 μ m pitch corresponds to **r**- ϕ direction and 100 μ m pitch to z ٠

After irradiation:

UΗ

plots show a module tuned to thr = 1200 e-

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

resolution below the binary limit and met requirement for masked pixels ٠

FSP CMS Erforschung von Universum und Materie

Conclusions

The preliminary analysis of test beam data acquired with modules irradiated to a variety of fluences has been presented:

• all requirements concerning the $\varepsilon_{hit} \times \alpha$, the σ_{hit} and the number of noisy pixels for RD53B_CMS assemblies have been met

Outlook:

- find the optimal configuration to operate the pixel assemblies throughout their lifetime at the LHC
- refine the analysis and simulate the obtained results as a function of fluence, threshold, bias voltage and incidence angle

Thank you for your attention!

BACKUP

What is crosstalk?

When do we have crosstalk (XT)?

• When charge on one pixel induces a signal on a neighboring pixel \rightarrow due to capacitive coupling.

Why do we want to get rid of it?

• XT degrades the spatial resolution biasing the position of the reconstructed hit.

FSP CMS Erforschung von Universum und Materie

The probability of detecting a hit is a function of:

• Injected charge Q

DER FORSCHUNG | DER LEHRE | DER BILDUNG

• Threshold of the comparator

Universität Hamburg

• Delay between injection and sampling

Detectable charge:

• $f(\Delta t)$

UН

• 25 ns periodicity

The highlighted red curve:

→ effective threshold of the detector

At the LHC the best timing will be chosen:

- Identifying the correct BX^0 to readout Within BX^0 and for the correct t_0 the module:
- Exhibits the highest efficiency
- $\rightarrow~$ associated the lowest threshold
- \rightarrow found for the **best delay** t₀
- \rightarrow as for the **tuning procedure**

The shape of the XT-induced signal differs from the one of the injected signal \rightarrow respective thresholds can have different phase and minima

Procedure consists in changing the timing of the readout and measuring:

• Effective threshold injected pixel | threshold of the coupled pixel | threshold of the uncoupled pixel

XT calculated for every fine delay:

oscillations in **anti-phase** \rightarrow XT has a minimum oscillations in **phase** \rightarrow XT is stable

Anti-phase (RD53B_CMS):

The shape of the XT-induced signal differs from the one of the injected signal \rightarrow respective thresholds can have different phase and minima

Procedure consists in changing the timing of the readout and measuring:

• Effective threshold injected pixel | threshold of the coupled pixel | threshold of the uncoupled pixel

XT calculated for every fine delay:

$$XT_{un/coup}(t) = \frac{r_{un/coup}(t)}{1 + r_{un/coup}(t)} \qquad r_{un/coup}(t) = \frac{Q_{sig,inj}^{50\%}(t)}{Q_{sig,un/coup}^{50\%}(t)}$$

oscillations in **anti-phase** \rightarrow XT has a minimum oscillations in **phase** \rightarrow XT is stable

Phase (RD53A):

XT was studied for CROC and RD53A assemblies with bitten HPK 25x100 planar sensors for different:

• pre-amp biasing | discharge modes: fast, slow | readout chips (RD53A and CROC) → always in synchronous mode | reading out 1 BX

In the region where the effective threshold is minimized:

$$\begin{array}{c} \text{CROC} \\ \text{XT}_{\text{coup}} = 4\% - 6\% \\ \text{XT}_{\text{uncoup}} = 2.4\% - 2.8\% \end{array}$$

XT and fine delay for uncoupled pixels

