

LUXE-LUPE workshop

April 15th 2024

Plasma mirrors as intensity boosters *"a promising path to probe SF-QED"*

<u>H. Vincenti¹</u>

P. Bartoli¹, Th. Clark^{1,2}, L. Fedeli¹, N. Zaïm¹, K. Oubrerie¹, A. Huebl³, J-L Vay³, <u>A. Leblanc²</u> ¹CEA, ²CNRS, ³LBNL

Cutieres

Outline

I. Plasma mirrors as intensity boosters

II. Reaching SF and NP QED regimes with Plasma mirrors

III. Conclusion/prospects

Outline

I. Plasma mirrors as intensity boosters

II. Reaching SF and NP QED regimes with Plasma mirrors

III. Conclusion/prospects

Our approach: reflection off curved relativistic mirrors

→ The Curved Relativistic Mirror (CRM) concept

(i) Intensification by tempotal intensification scalies reflection by spatial compression \Rightarrow Schwinger limit could be reached to the spatial spatial compression \Rightarrow Schwinger limit could be reached to the spatial spatial spatial spatial spatial spatial compression $\lambda << \lambda_{\rm L}$) Present record (4PW): $I_0^{1952} = 10^{23}$ W/cm² x ($\gamma = 10^{100}$ et al. PR099 ($\gamma = 10^{29}$ W/cm² (2003)

But how to actually implement this in the lab?

Relativistic plasma mirrors : a feasible implementation of a CRM

4

cea

Relativistic plasma mirrors : a feasible implementation of a CRM C22

WarpX supports many advanced features: some are unique

1D3V, 2D3V, 3D3V and RZ (quasicylindrical)

Cylindrical grid (schematic)

Advanced Algorithms Pioneered by our Team

mesh refinement, Maxwell spectral solvers, boosted frame, Galilean frame, ...

Multi-Physics Modules beyond standard PIC

ionization, Coulomb collisions, QED processes, Maxwell's Eq. in matter, embedded boundaries

ecp-warpx.github.io

The WarpX PIC code

Developed by a multidisciplinary, multi-institution team

ACM Gordon Bell Prize 2022

Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers

Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott, Conrad Hillairet, Stephan Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhisa Sato, Neil Zaim, Weigun Zhang, Jean-Luc Vay, Henri Vincenti

ACM Gordon Bell Prize

Recognizing Outstanding Achievement in High Performance Computing

What intensity could we achieve with plasma mirrors ?

Plasma mirrors can achieve 10³ to 10⁶ intensitification factors !

22

What are the preliminary experimental data ?

Radiation pressure curvature can focus Doppler harmonics

Dromey et al, Nat. Phys. (2009) Vincenti et al, Nat. Comm. (2014)

What are the preliminary experimental data ?

Radiation pressure curvature can focus Doppler harmonics

Dromey et al, Nat. Phys. (2009) Vincenti et al, Nat. Comm. (2014)

PM curvature induced/controlled optically by adjusting the density gradient

Vincenti et al, Nat. Comm. (2014)

What are the preliminary experimental data ?

Outline

I. Plasma mirrors as intensity boosters

II. Reaching SF and NP QED regimes with Plasma mirrors

III. Conclusion/prospects

SF-QED probing Study of SF-QED pair plasmas

SF-QED probing Study of SF-QED pair plasmas SF- QED validation NP-QED probing

-1

What χ parameter-space could we reach with DBB?

What signatures could we expect in experiments ?

• Experiment planned at the BELLA PW laser facility

cea

Cea

L-shaped target experiment at 500TW – Early 2025 (BELLA PW)

Cea

Summary Result $\#1 \Rightarrow$ Boosted lasers can increase SF-QED signal by orders of magnitude with existing lasers Sainte-Marie et al, NJP, (2022) Fedeli et al, PRL, (2021) Zaïm et al, PRL (2024) Result #2 \Rightarrow We can reach the onset of the fully NP regime χ >100 with a multi-GeV beam and 100TW boosted laser χ >1600 with a 10GeV beam and a PW boosted laser

Zaïm et al, PRL (2024)

17

<u>Step 1 at low \chi</u> (low I_{X-UV}): calibration of the curve achieved using combination of theory and experimental data.

\rightarrow How to achieve precision in the absolute calibration at low χ ?

Direct measurements of I_{X-UV} (and associated χ)

- Dynamical ptychography technique
- Energy-measurement in the X-UV using FEL techniques (DESY)
- Spatial phase characterization using Shack-Hartmann sensors (DESY)
- Temporal measurement using ThZ lasers

\rightarrow How to achieve precision in the absolute calibration at low χ ?

Direct measurements of I_{X-UV} (and associated χ)

- Dynamical ptychography technique
- Energy-measurement in the X-UV using FEL techniques (DESY)
- Spatial phase characterization using Shack-Hartmann sensors (DESY)
- Temporal measurement using ThZ lasers

Indirect measurement of I_{X-UV} / χ using the 'intensity-meter' technique

- Measure of the variations of QED signal with I_{XUV}
- Assess the correlation QED signal with χ/I_{XUV} using theory and high-fidelity simulations (with characterized laser profile)

19

Outline

II. Reaching SF and NP QED regimes with Plasma mirrors

III. Conclusion/prospects

A. Leblanc

H. Vincenti

Cea