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What are event weights?
Leading-order cross sections

Example: prediction for dijet production cross section
1 Relate to partonic cross section

ff2 jets
LO
= ff2 partons

2 Simulate partonic scattering events with weights wi
I Computed from scattering matrix elements + PDF + phase space factor
I Weights proportional to probability: wi > 0
I Sum of weights gives the cross section:

ff2 partons =
X
i

wi
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What are negative event weights?
Next-to-leading-order cross sections

Example: prediction for dijet production cross section
1 Relate to partonic cross section

ff2 jets
NLO
= ff2 partons+ff3 partons

2 Simulate partonic scattering events

ff2 partons =
X
i

wi

ff3 partons =
X
j

wj

ff2 partons; ff3 partons not separately observable:

Events weights can be either positive or negative
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Why are negative event weights a problem?
Number of unweighted events to reach given accuracy:
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Z + 1 jet
8:2× 108 events

Z + 2 jets
5:3× 108 events

Z + 3 jets
1:7× 109 events

W + 5 jets
1:2× 109 events

‚‚ + jets
106 events

NLO BlackHat + SHERPA

NLO + PS MadGraph5 aMC@NLO

V + jets: Phys. Rev. D 88 (2013) 014025, Phys. Rev. D 97 (2018) 096010

‚‚ + jets: parameters from background modelling for ATLAS H → ‚‚ measurement arXiv:2306.11379
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Cell resampling for V + jets at NLO
Negative weights
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Cell resampling drastically reduces the number of required events
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Cell resampling for V + jets at NLO
Predictions

Analysis from ATLAS, Eur. Phys. J. C77 (2017) 361:
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Cell resampling preserves predictions within a few per cent
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Work in progress: showered samples
pp → ‚‚+ jets, 106 events:
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Negative-weight reduction more efficient for large weighted samples
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Observables

Weighted events in 2D projection of phase space:

w = +∞

w = 0

w = −∞
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Observables
Weighted events in 2D projection of phase space:

D1

w = +∞

w = 0

w = −∞D2

Observables O:
• Select region D in phase space ≥ experimental resolution
• O =

P
i∈D wi ≥ 0 with sufficient statistics

e.g. histogram bins

Redistribute weights without affecting any observable
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Cell resampling
[Andersen, Maier 2021]

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
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Cell resampling
[Andersen, Maier 2021]

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
2 Iteratively add nearest event to cell until

P
i∈C wi ≥ 0 or radius exceeds rmax

Cells get systematically smaller with increasing statistics
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C

Cell resampling:

1 Choose seed event with negative weight for cell C
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P
i∈C wi ≥ 0 or radius exceeds rmax

3 Redistribute weights, e. g. average over cell: wi → w =
P
j∈C wj

# events in C
4 Repeat
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Cell resampling
[Andersen, Maier 2021]

w = +∞

w = 0

w = −∞

C

Cell resampling:

1 Choose seed event with negative weight for cell C
2 Iteratively add nearest event to cell until

P
i∈C wi ≥ 0 or radius exceeds rmax

What does “nearest” mean?
3 Redistribute weights, e. g. average over cell: wi → w =

P
j∈C wj

# events in C
4 Repeat
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Distances in phase space

Criteria for distance function:
• Small distance between events that look similar in detector

or differ only in properties the event generator can’t predict
• Large distance between events that look different in detector

Define distance in terms of infrared & collinear safe objects, e.g. jets

Current choice:
1 Find optimal pairing between observable objects in both events
2 Sum up spatial momentum differences
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Distances in phase space
Example

e

: jet : photon

pj1

pj2

px

py

e ′

qj1

qj2

q‚

qx

qy
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Distances in phase space
Example

Ensure same multiplicities

e

: jet : photon

pj1

pj2

p‚=0

px

py

e ′

qj1

qj2

q‚

qx

qy
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Distances in phase space
Example

Compare physics objects of same type

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e; e ′) = d(sj ; s
′
j ) + d(s‚ ; s

′
‚)
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Distances in phase space
Example

Compare photons

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e; e ′) = d(sj ; s
′
j ) + d(s‚ ; s

′
‚)

= d(sj ; s
′
j ) + d(p‚ ; q‚)
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Distances in phase space
Example

Compare jets: find pairs of most similar jets

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e; e ′) = d(sj ; s
′
j ) + d(s‚ ; s

′
‚)

= min
ˆ
d(pj1; qj1) + d(pj2; qj2); d(pj1; qj2) + d(pj2; qj1)

˜
+ d(p‚ ; q‚)
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Distances in phase space
Example

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e; e ′) = d(sj ; s
′
j ) + d(s‚ ; s

′
‚)

= d(pj1; qj1) + d(pj2; qj2) + d(p‚ ; q‚)
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Distances in phase space
Example

Compare momenta

e

: jet : photon

pj1

pj2

p‚ = 0

px

py

e ′

qj1

qj2

q‚

qx

qy

d(e; e ′) = d(sj ; s
′
j ) + d(s‚ ; s

′
‚)

= |~pj1 − ~qj1|+ |~pj2 − ~qj2|+ |~p‚ − ~q‚ |
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Distances in phase space
Work in progress: relative distance

Alternative metric based on relative momentum differences:
• Closer to experimental sensitivity
• Amount of cancellation better aligned with statistical uncertainty

Initial exploration for W p⊥ distribution in W + 1 jet: [Plot by Ella Cole]
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Runtime scaling
• Runtime for generating N events: O(N)
• Naive cell resampling: O(N2)

I Expect: #cells ∝ (#events with w < 0) ∝ #events
I Naive (k) nearest neighbour search: O(N)

Need faster nearest-neighbour search

Small number of dimensions:
• Histograms
• Voronoi cells (→ jet clustering in fastjet)

Here: vantage-point tree search
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Nearest-neighbour search
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Nearest-neighbour search

1 Vantage-point tree:

1
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Nearest-neighbour search

1 Vantage-point tree:

1

inside outside
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Nearest-neighbour search
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Nearest-neighbour search
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Nearest-neighbour search

11

22

3

Vantage-point tree:

1

2 3

e

Search nearest neighbour for e:
• Find candidate in region containing e
• Search neighbouring regions only if better candidate may be found
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Summary

• Negative event weights lead to slow statistical convergence
• Idea: remove negative weights by smearing over small phase space regions

I Potential to reduce the number of required events by orders of magnitude
I Preserves predictions of observables
I Agnostic with respect to process and observables
I Automatic improvement with increasing statistics
I Computationally efficient: ∼ 55 CPU hours for one billion events (W + 5 jets)

Outlook:
• Application to parton showered samples X [Andersen, Cueto, Maier, Jones]

• IRC safety with electroweak corrections [Andersen, Maier, Schönherr]

• Systematic estimate of uncertainties
• Integrate into existing workflows
• Guide Monte Carlo event generation? [Andersen, Maier, Maître, Schönherr]
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Backup
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Why do we need many more events?

Consider N uncorrelated unweighted events:
• wi = −w for i ≤ N−
• wi = +w for i > N−

⇒ Negative weight fraction: r− = N−
N

Then
• ff =

P
i wi = −N−w + (N − N−)w = (1− 2r−)Nw

• ∆ff =
qP

i w
2
i =

√
Nw

To reach given relative uncertainty ∆ff
ff = 1

(1−2r−)
√
N(r−)

= 1√
N(0)

:

N(r−) =
N(0)

(1− 2r−)2
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Event samples
[BLACKHAT + SHERPA 2013 + 2017]

Sample Process Centre-of-mass energy # events

Z1 pp → (Z → e+e−) + jet 13 TeV 8:21× 108

Z2 pp → (Z → e+e−) + 2 jets 13 TeV 5:30× 108

Z3 pp → (Z → e+e−) + 3 jets 13 TeV 1:65× 109

W5 pp → (W− → e−e) + 5 jets 7 TeV 1:17× 109
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Unweighting for Z + jet
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original: 8:21× 108 events
unweighted: 320 events
resampled + unweighted: 11574 events
resampled + unweighted (small sample): 320 events
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Resampling for W + 5 jets
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Distances in phase space

Need distance function d(e; e ′) between events e; e ′

• Essential: d(e; e ′) small ⇒ e; e ′ look similar in detector or differ only in
properties the event generator can’t predict

• Desirable: d(e; e ′) large ⇒ e; e ′ look different in detector

Example: infrared safety
• d(e; e ′) unaffected by collinear splittings with Θ → 0

• d(e; e ′) unaffected by soft particles with p → 0

⇒ define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator
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Distances in phase space
Concrete implementation jets electrons

1 Collect all infrared-safe objects in event e into sets { s1 ; s2 ; : : : ; sT }

d(e; e ′) =
TX
t=1

d(st ; s
′
t)

2 Objects in st have four-momenta ( p1 ; : : : : : : : : : : : : ; pP )

Objects in s ′t have four-momenta ( q1 ; : : : ; qQ; 0; : : : ; 0 )

d(st ; s
′
t) = min

ff∈SP

PX
i=1

dt(pi ; qff(i))
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Distances in phase space
Concrete implementation

jets electrons

1 Collect all infrared-safe objects in event e into sets { s1 ; s2 ; : : : ; sT }

d(e; e ′) =
TX
t=1

d(st ; s
′
t)

2 Objects in st have four-momenta ( p1 ; : : : : : : : : : : : : ; pP )

Objects in s ′t have four-momenta ( q1 ; : : : ; qQ; 0; : : : ; 0 )

d(st ; s
′
t) = min

ff∈SP

PX
i=1

dt(pi ; qff(i))

Efficient minimisation: Hungarian algorithm [Jacobi 1890]
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Distances in phase space
Concrete implementation

jets electrons

1 Collect all infrared-safe objects in event e into sets { s1 ; s2 ; : : : ; sT }

d(e; e ′) =
TX
t=1

d(st ; s
′
t)

2 Objects in st have four-momenta ( p1 ; : : : : : : : : : : : : ; pP )

Objects in s ′t have four-momenta ( q1 ; : : : ; qQ; 0; : : : ; 0 )

d(st ; s
′
t) = min

ff∈SP

PX
i=1

dt(pi ; qff(i))

3 Choose distance function between particle momenta
Here: independent of particle type t, do not consider internal structure

dt(p; q) =
q
(~p − ~q)2 + fi2(p⊥ − q⊥)2 fi : tunable parameter
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Computing requirements
Memory

Fast + exact nearest-neighbour search: keep all events in memory

Need ∼ (byte size of event) GB for ∼ 109 events

Only store relevant event data: weights + momenta of outgoing analysis objects

Read + convert events Cell resampling Read + write events

Current requirements:
• Persistent event samples with reasonably fast sequential access
• 300 GB to 400 GB of memory per 109 events,

no huge increase from showering expected

Can we go beyond ∼ 109 events?
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Work in progress: memory efficiency

1 Partition phase space using vantage-point tree from small event sample
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Work in progress: memory efficiency

2 Identify region for each event in large sample
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Work in progress: memory efficiency

3 Independent cell resampling for each region
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Computing requirements
CPU time

Benchmark machines:

# Cores CPU model Memory Age

20 XEON E5-2640 @ 2.40GHz 400GB ∼7 years
12 XEON E5-2643 @ 3.40GHz 800GB ∼6 years

Local rotating disks, RAID 6

2d 7h
cres 0.4.2

W + 5 jets
rmax = 10GeV

287d 7h
cres 0.4.2

W + 5 jets
rmax = 100GeV

8d 6h
Rivet 3.1.2

W + 5 jets
ASCII HepMC

100 101 102 103 104

CPU time [h] 12 / 13



Computing requirements
Wall-clock time

Benchmark machines:

# Cores CPU model Memory Age

20 XEON E5-2640 @ 2.40GHz 400GB ∼7 years
12 XEON E5-2643 @ 3.40GHz 800GB ∼6 years

Local rotating disks, RAID 6

‚‚ + jets
cres 0.6.1

106 events

‚‚ + jets
cres 0.7 (dev)

106 events

Z + 1 jet
cres 0.4.2

8:2× 108 events

W + 5 jets
cres 0.4.2

1:2× 109 events

Cell resampling

I/O (BlackHat ntuple)

I/O (ASCII HepMC)

0 1 2 3 4 5 6 7 8 9 10
Wall-clock time [h] 13 / 13
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