
Experiences integrating FZJ 
HPC Resources into the CMS 

Global Pool
Thomas Madlener

3rd TA Mini Workshop | Apr 09 2024

1



Global Pool 
● User job requests are sent to the “User Pool” (HTCondor)
● The GlideinWMS Frontend polls the user pool and ensures 

that enough resources are available
○ Resources are so called “glideins” in this case
○ Submits requests to to Glidein factory

● Glidein Factory and WMS Pool receive requests and 
submits HTCondor startd wrappers (glideins) to computing 
sites

● Site receives glidein jobs and start a HTCondor startd that 
joins the User Pool and becomes available as resource

● User jobs are matched to these resources
● Users only see the User Pool that “magically” 

grows/shrinks to match demand

https://glideinwms.fnal.gov/doc.prd/index.html (has nice animation of process)
https://twiki.cern.ch/twiki/pub/LCG/DiscussionsOnCMSSpecificCRIC/GlideinWMS-Factory-CERN.pdf 2

https://glideinwms.fnal.gov/doc.prd/index.html
https://twiki.cern.ch/twiki/pub/LCG/DiscussionsOnCMSSpecificCRIC/GlideinWMS-Factory-CERN.pdf


Global Pool and “manual glideins”

Global 
Pool

User jobs

Site Site Site

“Glidein”
● N cores
● X GiB memory
● OS
● GPU(?)
● ...

● User jobs go to the “Global Pool”
● Glideins are running on the different sites and connect to the 

Global Pool
● Each Glidein provides resources that can be used by the Global 

Pool
● Global Pool distributes user jobs to available (and matching) 

glideins
● Can launch glideins manually without going through 

GlideinWMS, the Global Pool doesn’t care

3



Requirements for running CMS jobs

● Hard- and software environment can run CMS software
● Glidein factory can get pilot jobs (glideins) onto the resource
● Glidein is able to report back and get work (i.e. outgoing network connection)
● Access to resource specific settings
● Access to CMS software and conditions data
● Potentially access to input data (depending on job type)
● Access to storage to write output data

○ Ideally also directly able to report to data CMS data management tools (RUCIO)

D. Hufnagel, Enabling opportunistic resources for CMS Computing Operations (CHEP 2015) 
https://inspirehep.net/literature/1413191 4

https://inspirehep.net/literature/1413191


Networking setup at JSC

Login 
nodeLogin 

nodeLogin 
nodeLogin 

nodeLogin 
node

Worker 
nodeWorker 

nodeWorker 
nodeWorker 

nodeWorker 
nodeWorker 

nodeWorker 
nodeWorker 

node

● Worker nodes can only connect to Login nodes
● Login nodes have outbound connections

○ But only on ports 80 (http) and 443 (https)
○ We need other ports as well

● VMs in DMZ with fewer network restrictions
○ Port 5432 and 3306 reachable from DMZ

VM

5
https://www.fz-juelich.de/en/ias/jsc/syst
ems/scientific-clouds/hdf-cloud/network
-setup

https://www.fz-juelich.de/en/ias/jsc/systems/scientific-clouds/hdf-cloud/network-setup
https://www.fz-juelich.de/en/ias/jsc/systems/scientific-clouds/hdf-cloud/network-setup
https://www.fz-juelich.de/en/ias/jsc/systems/scientific-clouds/hdf-cloud/network-setup


Conditions data

● Accessed via Frontier distributed database caching system
○ Uses the squid caching tool with some additional patches

● http-based protocol and RESTful API
● Need to be able to run a squid proxy and connect to it from worker nodes ✅

○ Can start squid proxy on VM and redirect http requests through it from worker nodes (via one 
of the open ports)

○ Can reach the central Frontier database
● Squid proxy usually run on separate node serving multiple worker nodes

○ Needs O(100 GB) disk space for caching and log files

6

http://frontier.cern.ch/
http://squid-cache.org/


Software environment (and situation at JSC)

● CMS software is distributed via CVMFS
● Using apptainer container to run jobs (depending on hardware and OS 

requirements)
○ Unpacked container images for different OS and hardware types are also distributed via 

CVMFS
● Need to be able to mount CVMFS on JSC ✅

○ Possible via cvmfsexec and bind-mounting into the container 
○ On typical HEP sites the necessary repositories are already mounted
○ Network traffic via squid running on VM

● Need to be able to run apptainer images 
○ Possible to pull images from dockerhub and then run
○ Not possible to run unpacked images from cvmfs directly (probably apptainer setting)
○ Not possible to run nested containers

7

https://cernvm.cern.ch/fs/
https://github.com/cvmfs/cvmfsexec


Communication with Global Pool

● Glideins need to be able to connect to the Global Pool from worker nodes
● On other HPC sites, e.g. via ssh tunnel to login node and outbound 

connection from there
○ Not enough network connectivity on JSC login nodes

● Can use VM to reach outside network via proxy setup
○ ssh tunnel from worker to login node (using the second open port)

○ Use proxychains to route all network traffic (except cvmfs & conditions data) through ssh 

tunnel

sshWorker 
node VM

8



Putting everything into a batch job

● Setup ssh tunnel
● Mount cvmfs repositories (using cvmfsexec)
● Launch apptainer container and bind-mount cvmfs repositories to /cvmfs

● Pre-load proxychains library (LD_PRELOAD)
● Launch glidein
● Enjoy

“Setup” on worker node

Work that is done inside the 
container that is launched in the 
setup

● Enter the now running container

9



Automating glidein submission

● Using COBalD / TARDIS
○ Developed at KIT
○ Used for transparent integration of other 

HPC resources as an extension to 
T1_DE_KIT

● Monitors usage of glidein for given 
site(s)

● Dynamically adds / removes glideins 
depending on usage

○ Slightly different approach than usual 
where “demand” is used

● Run on VM and submit (slurm) batch 
jobs via ssh

10

https://cobald.readthedocs.io/en/stable/
https://cobald-tardis.readthedocs.io/en/latest/


Summary

● Pool knows about Glideins that are registered with it
○ Can send payloads to these glideins if requirements of jobs match what it offers
○ Monitors these glideins and keeps track of which glideins are working on which payload
○ Glideins are not tied to user jobs, they just offer resources for jobs to run in

● Pool is agnostic to how these glideins are launched
○ GlideinWMS responsible for providing enough glideins for usual grid workflows
○ JSC: manually submitting glidein batch jobs to the (host, aka slurm) batch system

● (Ab)using some resources available to us in JSC DMZ we can get simulation 
jobs to run

○ No input data required
○ Output data handled via the usual CMS stageout tools and tunnel / proxy setup
○ Currently still very targeted job submission

● Glidein submission automated via Cobald / Tardis
● Prototype setup working -> some tweaks necessary for production

11

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc

https://gitlab.desy.de/thomas.madlener/cms-drp-jsc


Open points / observations

● Currently running a slightly non-standard glidedin wrt CMS
○ Standard glidein requires possibility of running nested containers
○ Some repercussions for production usage (e.g. cannot choose OS flexibly)

● “Proper scale testing”
○ Regularly run 256 jobs (1 node on Jureca), filling all slots of a glidein
○ Using parallel 2 glideins (512 jobs) we observed some network issue(?) in the past, but not 

reproducible at the moment (no changes to our setup)
● “Network issue”:

○ Glidein lost connection with pool -> Cobald / Tardis could no longer see it and killed it on the 
host batch system

○ Keeping glidein batch job alive -> Payloads complete normally and glidein at some point 
reconnects with pool

● Full production scale will require some interaction with JSC admins

12



Backup

13



Network usage 
on VM

14

5 min averages

Slurm exit status

Height is random! 
(visualization only)

Excluded network 
overload as reason for 
glidein disconnects

“Idle” (no payloads), 
Cobald / Tardis keeps 
one glidein always

Manually 
canceled

1 glidein

2 glideins



Data access

● Data usually stored/replicated on different sites
● Accessing via network using the site that is “closest”
● Users can black/whitelist certain sites in their configuration
● Replication and registration in CMS central database via RUCIO
● To access data need necessary authentication via grid proxy and outbound 

connection 
○ With proxy setup can copy data to worker nodes via xrdcp
○ Automatic stage-out via T1_DE_KIT to T2_DE_DESY is working for simulation jobs (no inputs)

● Not completely solved yet!

15



Glidein Factory receives 
requests from Frontend

Submits glideins as jobs to host 
batch system

User Pool matches glideins 
(resources) to the user jobs and 
sends them to the worker nodes

User jobs are started on the 
worker nodes that are “reserved” 
by the glidein

glidein (pilot) starts on host 
batch system

Sets up environment and runs 
validation

Reports back to User Pool and 
becomes available resource

User job runs; accessing 
conditions data, input data, etc. 
and producing output data

User job finishes

Output data is handled by 
“Stage Out” procedure that 
registers data in central 
database and handles moving it 
appropriately

Glidein remains available and if 
new user jobs arrive they can be 
matched and run in the same 
resource

User submits job to User Pool

Glidein WMS Frontend submits 
request for glideins (if not 
enough resources available)

Allocation for the glidein on host 
batch system ends and 
resources are returned to the 
host

Timeline of User Job

Global Pool management

Usage of site ressources 16



Worldwide LHC Computing Grid (WLCG)

● Tier-0 @CERN 
○ Prompt reconstruction, long-term data 

storage
● Tier-1 

○ Long-term storage (partial data)
○ Reprocessing
○ Distribution to Tier-2

● Tier-2
○ Analysis and Simulation tasks
○ E.g. @DESY
○ Some storage

● Tier-3
○ Smaller resources without formal 

WLCG agreement
● Challenge: Integrate different sites 

transparently for users

17


