JRA SRF

• Objectives

- Increase of accelerating gradient
- Increase of quality factor
- Improvement of reliability, operating performance and availability
- Reduction of cavity fabrication costs and related components
- Main infrastructure: TFF /now FLASH
- 10 WP`s (31 tasks) are characterized by
 - Improvement of existing components (e.g. flanges)
 - Development of new components (e.g. tuner, beam monitor)
 - R&D on new treatment and new quality methods (electro polishing, Squid scanning)
 - High risk developments:
 - Vacuum arc coating (ongoing)
 - Dry ice cleaning (ongoing)
 - Coupler conditioning

Status JRA SRF deliverables

N°	Deliverable Name	Туре	Task	Lab	Planne d											WP-leader
2006/7	1-cell spinning parameters defined	Report	3	INFN-Leg	36											Palmieri
						10	20	30	40	50	60	70	80	90	100	
		2007	SRF			Progress in %										
5	Fabrication of new cavity with improved components	Prototype	2.2.5.2	INFN	47											Michelato
6	Fabrication Multi-cell cavities by spinning	Prototype	3.1.7.2	INFN-Leg	48											Palmieri/Möller
7	Fabrication of hydroformed 9-cell cavities	Prototype	3.2.6.3	DESY	47											Singer/Möller
8	First multicell coating with linear-arc cathode	Prototype	4.1.2.2	IPJ	48											Sadowski
9	First multicell coating with planar-arc cathode	Prototype	4.2.2.4	INFN-Ro2	41											Sadowski
10	Report on quality of HTc superconducting properties	Report	4.2.3.2	INFN-Ro2	48											Sadowski
11	EP on single cells: parameters fixed	Report	5.1.5.2	CEA	48											Matheisen
12	Evaluate oxipolishing experiments	Report	5.2.3.9	DESY	40											Matheisen
13	Final report on industrial electropolishing	Report	5.2.4.8	DESY	48											Matheisen
14	Automated EP: Conclude on best electrolyte	Report	5.3.5.5	INFN-Leg	44											Matheisen
	VT CO ₂ of 9-cell cavities: evaluation of experimental															Matheisen
15	results	Report	5.4.4.2	DESY	48											Matheisen
	Dry ice cleaning of horizontal 9-cell cavities:															Matheisen
16	evaluation of experimental results	Report	5.4.6.2	DESY	48											Matheisen
17	Final report on SQUID scanning	Report	6.1.5.4	DESY	48											Palmieri
	Conclude on comparison of SQUID scanner vs. flux															Palmieri
18	gate detector	Report	6.2.6.2	INFN-Leg	48											
19	DC field emission: evaluation of scanning results	Report	6.3.1.9	DESY	48											Palmieri
	DC field emission: evaluate strong emitter															Palmieri
20	investigations	Report	6.3.2.6	DESY	48											
21	Prototype couplers: final report on conditioning	Report	7.3.3	Ors	47											Variola
22	Evaluation of INFN tuner operation	Report	8.1.10	INFN-Mi	48											Sekalski
23	Cryostat integration tests: final evaluation	Report	10.6.3	CEA	46											Visentin
24	Evaluation of BPM operation	Report	11.1.12	CEA	48											Castellano
25	Evaluation of beam emittance monitor operation	Report	11.2.13	INFN-Ro	48											Castellano
26	EB Welding of prototypes of components	Prototype	2.3.3.6	DESY	48											Michelato

- Annual CARE meeting at CERN 29.-31. October 07
 Two highlight talks: Beam position monitor, advances in EP
- Strong effort is required to finish our deliverables this year
- Yearly report 2007 is kind of JRA1 summary
- Delays and extension into year 5 (2008) is expected for:
 - Thin film coating
 - Dry ice cleaning
 - Multicell spinning
- Final summary of JRA1 in middle of 2008
 - Will concentrate on the detailed description of the impact of JRA1 R&D effort to SRF technology

Preparation of CARE II in FP7

- Short summary of ESGARD meeting OMIA last week at CERN
- Priority proposals <u>SCRF-Proposals</u>
- Additional proposals <u>Additional proposals</u>