DC Field Emission Results on Nb Samples

A. Dangwal and G. Müller FB C Physics Department, University of Wuppertal, Germany gmueller@uni-wuppertal.de 18th September 2007

- Overview of Nb samples investigated since last meeting
- Surface characterization of single/large crystal samples
- Suppression of FE by DIC and nature of emitters
- Emitter statistics of single/large crystals after BCP/HPR
- Correlation between FE onset field and defect size
- First results on SC/LG after in-situ bakeout at 150°C
- Intrinsic FE of SCNb in defect-free sample areas
- Conclusions and outlook for FP7

Overview of Nb samples investigated since last meeting

Focus on large grains (LG) and single crystals (SC) between November 06 and July 07

Sample #	Polishing in µm	HPR	FESM	SEM/ EDX	DIC	FESM	SEM/ EDX
PolyNb	EP at Henkel	yes	yes	yes	no	no	no
LGNb1	BCP30	yes	yes	yes	yes	yes	yes
LGNb2	BCP30	yes	yes	yes	yes	yes	yes
LGNb3	BCP100	yes	yes	yes	no	no	no
SCNb1	BCP30	yes	yes	yes	yes	yes	yes
SCNb2	BCP30	yes	yes	yes	yes	yes	yes
SCNb3	BCP100	yes	yes	yes	no	no	no
SCNb4	BCP100	yes	yes	yes	no	no	no
SCNb7	BCP100	yes	yes	yes	no	no	no

Optical microscope images of SC and LG Nb samples

SCNb1 – BCP 30 µm

SCNb2 – BCP 30 µm

BCP 100 µm provides the best surface

LGNb3 – BCP 100 µm

G. Müller, 18.09.2007

Bergische Universität Wuppertal

Surface roughness of SC and LG Nb samples by AFM

measured by X. Singer at DESY 40 60 20 0 µm 0 µm 20 40 60 80 0.64 µm 0 167 nm 0 20 20 40 40 60 60 80 0.00 µm 0 nm SCNb2, BCP 30 µm LGNb1, BCP 30 µm 60 20 40 0 µm Rms: 17.6 nm Rms: 62.7 nm 84 nm 0 20 40

0 nm Mir

Mirror-like surfaces

CARE-SRF07, Warsaw

G. Müller, 18.09.2007

Rms:

SCNb4, BCP 100 µm

7 nm

60

Crystal orientation of SC and LG Nb samples by XRD

measured by X. Singer at DESY

XXX

Bergische Universität Wuppertal

Field emission scanning microscope (FESM)

G. Müller, 18.09.2007

Bergische Universität Wuppertal

FE suppression of SC and LG Nb samples by DIC

A. Dangwal et al., J. Appl. Phys. 102, 044903 (2007)

Mirrorlike SCNb sample of Ø 28 mm under W tip anode, 1 µm apex radius

PID-regulated voltage maps U(x,y) for 2 nA scan area = 5×5 mm², flat W anode $Ø_a$ = 100 µm U_{max} = 5000 V, electrode spacing Δz = 25/20

no FE @ 120 MV/m no FE @ 150 MV/m 9 emit. @ 200 MV/m 1 emit. @250 MV/m Samples LGNb1, LGNb2, SCNb1 yielded before and after DIC 0, 2, 0 @ 120 MV/m no FE @ 150 MV/m 10,12, 5 @ 200MV/m 2, 0 @ 250MV/m DIC statistically suppresses FE on all type of samples (Cu, Nb) Bergische Universität Wuppertal

Effect of DIC on scratch-like emitter with small particulate

A. Dangwal et al.J. Appl. Phys. 102, 044903 (2007)

Removal of 400 nm particulate and

edge smoothing of scratch head on SCNb2 by DIC

E-maps for SCNb1 (BCP30HPR) and SCNb7 (BCP100HPR)

PID-regulated voltage maps U(x,y) for 2 nAscanned area = $5 \times 5 \text{ mm}^2$ flat W-anode $\emptyset_a = 100 \ \mu\text{m}$ anode voltage U = $5000 \ \text{V}$ electrode spacing $\Delta z = 25 \ \mu\text{m}$ $\Delta z = 20 \ \mu\text{m}$

no emission @ 120MV/m no emission @ 150MV/m 5 emitters @ 200MV/m 3 emitters @ 250MV/m SCNb + BCP100HPR yields less FE than PolyNb + EP100HPR

Bergische Universität Wuppertal

Emitter statistics for SCNb and LGNb after BCP 30/100 µm final HPR **50** · SCNb_30µm CryNb_30µm 40 Emitter number density N (#/cm²) SCNb_100µm CryNb_100µm 30 PolyNb + EP 20 10 Slightly reduced FE for SCNb than LGNb and longer BCP 0 0 50 100 150 200 250

G. Müller, 18.09.2007

Bergische Universität Wuppertal

 $E_{peak} = 2 \times E_{acc}$

Bergische Universität Wuppertal

Correlation between FE onset field and defect size ?

based on FE measurements and SEM analysis of 38 field emitters

G. Müller, 18.09.2007

In-situ bakeout at 150 °C effects on LGNb3 and SCNb4

PID-regulated U(x,y) for 2 nA scanned area = $5 \times 5 \text{ mm}^2$ flat W-anode \emptyset_a = 100 µm, U_{max} = 5000 V, Δz = 25, 20, 16.6 µm

Intrinsic FE of SCNb in defect-free sample areas

measured with W-tip anodes of $Ø_a = 5-10 \ \mu m$ at U = 5000 V and $\Delta z > 1 \ \mu m$ SCNb4, (111) orientation SCNb7, (100) orientation

Initially intrinsic field emission of Nb with slope $\beta = 1 \implies \Phi = 3.8 \text{ eV}$

Intrinsic field emission of Nb slope $\beta = 1 \implies \Phi = 4 \text{ eV}$

creation of an emitter at ~ 1000 MV/m by a microdischarge \Rightarrow crater in Nb

 \Rightarrow SCNb samples reveal anisotropy of work function Φ

Conclusions and outlook for FP7

- DIC effectively removes particulates and weakens protrusions
 ⇒ in situ repair cleaning of FE cavities in module ! (JAP102, 2007)
- Large/single crystal Nb samples show after BCP30/100-HPR better FE results than EP-HPR samples of various kinds
 ⇒ reliable alternative for SRF cavities with less FE ! (SRF 2007)
- Evidence for a correlation between onset field and emitter size
 ⇒ fast FE quality control on samples for XFEL ! (SRF 2007) + FP7
- Evidence for impurity segregation to grain boundaries in LGNb after bakeout at $150^{\circ}C \Rightarrow$ reduced FE in SCNb ! (SRF 2007) + FP7
- Intrinsic FE on SCNb with $\beta = 1$ and $\Phi = 4$ eV partially obtained \Rightarrow surface roughness enhances FE of particulates ! (SRF 2007)

PhD thesis of A.Dangwal will be presumably available in November 2007

D. Lysenkov, C.S. Pandey and R. Heiderhoff at Univ. Wuppertal

D. Reschke, A. Brinkmann, J. Ziegler, W. & X. Singer and D. Proch at DESY

R. Grimme, C. Zorne and D. Werner at Fraunhofer IPA Stuttgart

CARE, contract number RII3-CT-2003-506395

