
Version control with git

PYOOP Workshop 2025

David Koch

Version control | PYOOP Workshop 2025 | David Koch 2

Website & Documentation:

https://git-scm.org

Version control | PYOOP Workshop 2025 | David Koch

https://git-scm.org/

A project (= folder) managed by git is called a repository

The "history" of the repository consists of commits

A commit is like a snapshot of the repository state; you decide when to commit,
which changes to include, and why

mycode.py
+ 1 import antigravity
+ 2
+ 3 def calculate(x, y):
+ 4 ���

commit history

David Koch
Mar 13, 2023 4:38pm GMT
fd907912a1e79c879d7a6384

initialize project

David Koch
Mar 13, 2023 5:12pm GMT
093579a040fd1d767b1bb274

implement calculation

David Koch
Mar 13, 2023 5:23pm GMT
fea1d3f42ae90ddf79128c8f

fix calculate function

author

date
sha

commit message

mycode.py
 3 def calculate(x, y):
- 4 ���
+ 4 x + y

mycode.py
 3 def calculate(x, y):
- 4 x + y
+ 4 return x + y

Each commit includes author, date, commit message, changes (diffs), and
pointer(s) to one or more parent commits

Version control | PYOOP Workshop 2025 | David Koch 4

Create a commit

Commits are created with the git commit command. Git only commits changes that
are in the staging area. Stage changes with git add .

git add <path> # add whatever you want to include in the commit
git commit -m "meaningful commit message"

To get additional info on your repository's status:

git status # list changed files since last commit
git diff # see what changes are not staged
git diff --staged # see what changes are staged
git show <SHA> # show information about a specific commit
git log # show commit history of current branch

Version control | PYOOP Workshop 2025 | David Koch 5

Create a commit

latest commit

make
changes

unstaged
changes

staged
changes

git add <path>

new commit

git commit -m "���"

git reset ��hard HEAD~

git reset ��soft HEAD~

git commit -am "���"

git restore ��staged <path>

gi
t
re
st
or
e
<p
at
h>

Version control | PYOOP Workshop 2025 | David Koch 6

Branches

The commit history (commit tree) does not have to be linear!

main

bugfix/plots

testing

A branch points to a commit and is automatically updated when a new commit is
added.

Version control | PYOOP Workshop 2025 | David Koch 7

Branches

The commit history (commit tree) does not have to be linear!

main

bugfix/plots

testing

A branch points to a commit and is automatically updated when a new commit is
added.

Version control | PYOOP Workshop 2025 | David Koch 8

Branches

Create a new branch based on the latest commit and switch to it:

git checkout -b <new-branch-name>

Switch to an existing branch (only works if the working directory is clean — no
unstaged files):

git checkout <branch-name>

List existing branches and see which branch you're currently on:

git branch

Version control | PYOOP Workshop 2025 | David Koch 9

make plot red

main

Version control | PYOOP Workshop 2025 | David Koch 10

make plot red

main

rewrite analysis
in columnar style

parallelize

Version control | PYOOP Workshop 2025 | David Koch 11

make plot red improve style

main

rewrite analysis
in columnar style

parallelize

Version control | PYOOP Workshop 2025 | David Koch 12

make plot red improve style

main

rewrite analysis
in columnar style add dask config

parallelize

Version control | PYOOP Workshop 2025 | David Koch 13

Merging

git checkout <branch-to-merge-into>
git merge <branch-to-merge> --no-edit

make plot red improve style

main

rewrite analysis
in columnar style add dask config

parallelize

merge branch 'parallelize'
into main

Version control | PYOOP Workshop 2025 | David Koch 14

Merge Conflicts

In some situations git can't automatically merge Merge Conflict!

make plot red

make plot blue

???
CONFLICT (content): Merge conflict in analsis.py
Automatic merge failed; fix conflicts and then commit the result.

Version control | PYOOP Workshop 2025 | David Koch 15

Resolving Merge Conflicts

Git marks the spots where conflicting changes need to be merged manually:

<<<<<<< HEAD
plt.hist(df["B0_mbc"], range=(5.2, 5.3), color="red", bins=20)
=======
plt.hist(df["B0_mbc"], range=(5.2, 5.3), color="blue", bins=20)
>>>>>>> styling

To resolve the conflict, remove the markers (<<< HEAD , === , >>> other-branch)
and decide which change to keep. Then:

git add . # stage all changes
git commit # finish the merge
or abort the merge
git merge --abort

Version control | PYOOP Workshop 2025 | David Koch 16

Resolving Merge Conflicts

Many code editors assist in resolving merge conflicts with color highlights and
"accept incoming/current changes" buttons.

Example VSCode:

Version control | PYOOP Workshop 2025 | David Koch 17

Insert: Git in Code Editors

Most code editors support git! e.g., VSCode

18

main

bugfix/plots

testing

mai
n

bugfix/plo
ts

testi
ng

mai
n

bugfix/plo
ts

testi
ng

me/mycoolproject

gitlab.com

gitlab.com

notme/mycoolproject

fork

gar-ws-etpku01

bertis-home-pc

mai
n

bugfix/plo
ts

testi
ng

clone/pull
push

Remotes

A git repository can have one or
more remotes, identical copies on a
server like

https://github.com

https://gitlab.com

https://gitlab.physik.uni-
muenchen.de

...

Version control | PYOOP Workshop 2025 | David Koch 19

https://github.com/
https://gitlab.com/
https://gitlab.physik.uni-muenchen.de/
https://gitlab.physik.uni-muenchen.de/

Remotes

A remotely existing repository can be copied using git clone .

git clone <url>

In the local copy, the remote is called origin per default.

Version control | PYOOP Workshop 2025 | David Koch 20

Remotes

If you already have a local repository and want to create a remote for it, go to your
chosen platform, create a blank repository there, copy the URL (not from the
browser, use the one ending in .git that appears in the instructions), then:

git remote add origin <url>
git remote -v # list remotes

origin is the local name of the remote repository. The name is arbitrary.

It is possible to have multiple remotes, e.g., git remote add fork other-url

Version control | PYOOP Workshop 2025 | David Koch 21

Remotes

To keep the local and remote repositories in sync, you use push and pull:

get most recent changes from the remote main branch
and merge them into the local main branch
git pull origin branch
git pull # shortcut
push my recent changes in some branch
to the remote 'origin'
git push [--set-origin] origin branch

git push only works if there are no newer changes on the remote! always git
pull first

get remote changes without merging them into your local branch: git fetch

Version control | PYOOP Workshop 2025 | David Koch 22

Remotes - Authentication

Services like GitHub or GitLab require authentication to push (and to pull/clone
private repos). The remote URL determines the method:

git@... SSH authentication: upload your public SSH key to the server once

https://... HTTPS authentication: enter your password every time

SSH setup instructions:

gitlab: https://docs.gitlab.com/ee/ssh/index.html

github: https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/adding-a-new-ssh-key-to-your-github-account

Version control | PYOOP Workshop 2025 | David Koch 23

https://docs.gitlab.com/ee/ssh/index.html
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Remotes - Not Just a Backup

social coding

Create bug reports

Create pull requests
(/merge requests)

Review code

Comment, like, react, ...

Version control | PYOOP Workshop 2025 | David Koch 24

Collaboration -- how to contribute to a project (Github / Gitlab)

1. Create an issue to report a bug or describe a feature request

2. Indicate that you would like to work on it! Best also describe what you plan to
do. example: github

25

3. If you have the required permissions, create a branch + PR directly on that
remote repository
example: gitlab

Version control | PYOOP Workshop 2025 | David Koch 26

3. If you don't have permissions to create a branch on that remote, fork the project
first and create a branch there. example: github

4. Fix the bug / implement the feature on your branch. Push your changes.

5. Create a merge request (MR, Gitlab language) / pull request (PR, Github
language) if there is none yet. example: github

Version control | PYOOP Workshop 2025 | David Koch 27

5.2 Make sure to link the related issue by mentioning it (#<issue-number>).
Describe what you did. example: github

6. Wait for your changes to be reviewed. Implement requested changes.

Version control | PYOOP Workshop 2025 | David Koch 28

7. Eventually, a maintainer may or may not approve and merge your changes.

8. Don't be discouraged if your changes don't get approved in the end! You can
always maintain your own fork.

If it's mainly you working on your own project, it can still be helpful to follow this
process to make full use of Github's / Gitlab's project management features.

Version control | PYOOP Workshop 2025 | David Koch 29

Tags

give a name to a specific commit; commonly used to mark releases

git tag v0.3.0 # current HEAD is now also called v0.3.0
git push --tags

checkout also recognises tags:

git checkout v0.2.1

list all commits between version 0.2.11 and the current HEAD (useful for writing
changelogs!):

git log --oneline v0.2.11..

Version control | PYOOP Workshop 2025 | David Koch 30

Git LFS

git diffs are line based works only well for text

when tracking a binary file with git and it changes, it has to store the new
version as a separate blob .git folder size increases each time!

 git Large File Storage to the rescue

https://git-lfs.com/

Version control | PYOOP Workshop 2025 | David Koch 31

https://git-lfs.com/

start using git lsf: git lfs install

tell git to track files with a certain ending with LFS:

git lfs track "*.root"
these settings are saved in .gitattributes
git add .gitattributes
continue using git like usual
git add somefile.root # <- will be tracked with git lfs

want to switch to using git lfs? git lfs migrate attention: this will rewrite history

Version control | PYOOP Workshop 2025 | David Koch 32

git lfs footguns / limitations

if you clone a repo with LFS tracked files without having git lfs installed, you will
only see "pointer-files"

remote hosting service must support git lfs

on Github: max 2GB per file

Version control | PYOOP Workshop 2025 | David Koch 33

Submodules

"git repository inside a git repository"

why?

dependency on some fork of a library / need to pin to a commit

sharing a common codebase in multiple projects

"pseudo mono-repo": managing multiple dependent repos in a parent-repo

no trust in package repository to be available in the long future

 if the dependency / common codebase is properly packaged and published in
some package registry, there often is no need to use submodules

Version control | PYOOP Workshop 2025 | David Koch 34

Examples

 mypackage
├──  mypackage
│ ├──  plugins
│ │ ├──  __init__.py
│ │ ├──  my_plugin
│ │ └──  other_dudes_plugin @ 16e96ffa # <- submodule
│ ├──  __init__.py
│ └──  submoduleA.py
├──  tests
│ ├── ...
│ └── ...
└──  pyproject.toml

Version control | PYOOP Workshop 2025 | David Koch 35

using submodules

cloning a repository that has submodules:

git clone --recursive <url>

pulling changes in submodules:

git submodule update

adding a submodule to a repository:

git submodule add <url> [<path>]
git add .gitmodules
git commit ...

Version control | PYOOP Workshop 2025 | David Koch 36

making changes to a submodule without tripping up

cd my-submodule
git add; git commit; git push
cd ..
git add my-submodule
git commit ...

footguns:

forgetting to commit changes inside the submodule

forgetting to push changes inside the submodule (git push in the parent repo
does not push changes in the submodule to the submodule's remote)

Version control | PYOOP Workshop 2025 | David Koch 37

Notable mentions

undo all unstaged changes without throwing them away: git stash ; bring
them back: git stash pop

cloning only part of a (large) repository: sparse checkouts

git clone --filter=blob:none --no-checkout <url> && cd <repo>
git sparse-checkout init --cone
git sparse-checkout set <path-i-want>

cloning only part of the history, eg only the latest commit: shallow checkouts

git clone --depth 1 <url>

see "where you've been": git reflog

Version control | PYOOP Workshop 2025 | David Koch 38

~/.gitconfig

random neat little tricks for your configuration

aliases: define your own git commands

[alias]
 unstage = restore --staged
 # show a visual graph
 graph = log --graph --full-history --all --color
 latest-tag = describe --tags --abbrev=0
 # show all remote commits that are not yet merged into local
 incoming = "!f() { git fetch && git log ..origin/$(git rev-parse --abbrev-ref HEAD); }; f"
 # show all local commits that are not yet pushed
 outgoing = "!f() { git fetch && git log origin/$(git rev-parse --abbrev-ref HEAD)..; }; f"

allows you to type the command git unstage , git graph , ...

Version control | PYOOP Workshop 2025 | David Koch 39

~/.gitconfig

random neat little tricks for your configuration

conditional includes:

[includeIf "gitdir:/home/davekoch/"]
 path = ~/.gitconfig-personal
[includeIf "gitdir:/home/davekoch/Documents/arbeit/"]
 path = ~/.gitconfig-work

~/.gitconfig-work
[user]
 name = David Koch
 email = david.koch@physik.uni-muenchen.de

Version control | PYOOP Workshop 2025 | David Koch 40

What have we learned today?

how to use the basics of git: creating commits, inspecting diffs and the log

why and how to use branches, merging with and without conflicts

how to keep your local repository in sync with a remote repository: clone, push
& pull

how to make use of Github's / Gitlab's project management features to follow
the development cycle: issue fork or branch merge request review
merge

how to use tags to mark releases

how to use git lfs

how to use submodules

...

Version control | PYOOP Workshop 2025 | David Koch 41

Exercise

https://github.com/davekch/PYOPP-2025-git-tutorial

Version control | PYOOP Workshop 2025 | David Koch 42

https://github.com/davekch/PYOPP-2025-git-tutorial

Backup

Version control | PYOOP Workshop 2025 | David Koch 43

Brief Insert: SHA

The "sha" of a commit is the output of a cryptographic hash function called SHA-1. All
information defining the commit (including parent commit!) is used as input.

small change in input completely different output

one-way: input can't be derived from output

no collisions: (almost) impossible to find two different inputs with same output

Version control | PYOOP Workshop 2025 | David Koch 44

David Koch
Mar 13, 2023 5:12pm GMT

implement calculation

David Koch
Mar 13, 2023 5:12pm GMT

implement calculate

mycode.py
 3 def calculate(x, y):
- 4 ���
+ 4 x + y

mycode.py
 3 def calculate(x, y):
- 4 ���
+ 4 x + y

SHA-1

SHA-1

093579a040fd1d767b1bb274

3072717fc8cb51229bbe4424

 the SHA / commit ID uniquely identifies a commit

Version control | PYOOP Workshop 2025 | David Koch 45

rebase

If for some reason you prefer to have a linear history, you can use git rebase

rebase creates new commits on top of main (in this example) and deletes the old
ones. This is rewriting history. Git will not allow you to push a branch with an altered
history unless you do git push --force .

Never rewrite history on branches other people work on too unless it's coordinated.
Rewriting history can cause lots of friction.

Version control | PYOOP Workshop 2025 | David Koch 46

The intuition that a branch is a
literal "branch" that branched
off some other branch works
well in many scenarios but it
has its limitations and it is
technically false.

But what is a branch?

Version control | PYOOP Workshop 2025 | David Koch 47

In git, a branch is just a reference to a commit that gets
automatically updated when new commits are added on top.

This means:

a branch not only contains the "offshoot" commits but the
entire history that came before its most recent commit

there is no such thing as a base or a parent of a branch

instead: common ancestor of two or more branches

That's for example the reason why you can't git rebase without
specifying a target (e.g., git rebase main): git does not know
your branch "branched-off" of main .

Inspect branches by looking into .git/refs/heads .

read more
Version control | PYOOP Workshop 2025 | David Koch 48

https://jvns.ca/blog/2023/11/23/branches-intuition-reality/

Gitignore

Many files shouldn't be tracked by git, e.g., compiled programs, caches, logs, ...
.gitignore is a file containing wildcards for files git should ignore.

ignore compiled python
__pycache__/
*.pyc

ignore pdfs
*.pdf
but not this one
!super-important.pdf

If a file is already tracked and you now want git to ignore it:

git rm --cached <file>

Version control | PYOOP Workshop 2025 | David Koch 49

