Version control with git

PYOOP Workshop 2025
David Koch

Gefordert durch:

— M

fUﬂF esmr:nlsgefll_u hrolo g E R U LU DW' G_

und Raumfahrt MAXIMILIANS-
UNIVERSITAT

MUNCHEN

When you're dead but remember you
forgot to git commit git push your
[ast code iterations

Version control | PYOOP Workshop 2025 | David Koch

-
0 glt —-distributed-even-if-your-workflow-isnt Q Search entire site...

Git is a free and open source distributed version control
system designed to handle everything from small to very
large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning
fast performance. It outclasses SCM tools like Subversion, NN
CVS, Perforce, and ClearCase with features like cheap local
branching, convenient staging areas, and multiple

workflows.

% About Documentation

3 rce Release
ﬁ The advantages of Git m Command reference pages, Ldiest source Releas

compared to other source Pro Git book content, videos 2 .40 . 0

We bS ite & D O C u m e ntati O n . control systems. and other material. Release No

. Downloads Q Community
° - GUI client d bi Get involved! B Tti
https://git-scm.org P oo QY i o
platforms. development and more.

& i
Pro Git by Scott Chacon and Ben Straub is available to read online for ¢ Linux GUIs WM Tarballs
free. Dead tree versions are available on Amazon.com.

‘ Mac Build B Source Code

Companies & Projects Using Git
PostgreSQOL

Google Microsoft ’ LinkedJ. NETFLIX ?@ @ £

& m "é'GNOMl-: @rﬂ-- {,IS X

Ve rsion co ntrol | PYOOP Wo rkshop 2025 | David Koch About this site Git is a member of Software Freedom Conservancy

Patches, suggestions, and comments are welcome.

https://git-scm.org/

e A project (= folder) managed by git is called a repository

e The "history" of the repository consists of commits

e A commitis like a snapshot of the repository state; you decide when to commit,
which changes to include, and why

mycode. py . .
+ 1 dimport antigravity mycode. py mycode. py commit hlstory
i+ 2 3 def calculate(x, y): 3 def calculate(x, y):
+ 3 def calculate(x, y): -y T X +y
+ 4 + 4 Xty + 4 return x +y

author () O O =>
David Koch David Koch David Koch

Mar 13, 2023 5:23pm GMT
feald3fU2ae90ddf79128c8f

date —— Mar 13, 2023 u4:38pm GMT
= £d907912a1e79c879d7a6384

ﬁ initialize project

commit message

Mar 13, 2023 5:12pm GMT

093579a2040fd1d767b1bb274
sha

implement calculation fix calculate function

e Each commit includes author, date, commit message, changes (diffs), and
pointer(s) to one or more parent commits

Version control | PYOOP Workshop 2025 | David Koch

Create a commit

Commits are created with the git commit command. Git only commits changes that
are in the staging area. Stage changes with git add .

git

add <path>

add whatever you want to include 1n the commit

git commit -m "meaningful commit message"

To get additional info on your repository's status:

git
git
git
git
git

status

diff

diff --staged
show <SHA>
log

TR

list changed files since last commit

see what changes are not staged

see what changes are staged

show 1nformation about a specific commit
show commit history of current branch

Version control | PYOOP Workshop 2025 | David Koch

Create a commit

unstaged staged
h changes
¢ aﬂﬂfs git add <path> . ,_9

||| €—

git restore --staged <path>

make
changes

A
O ¥

latest commit

new commit

Version control | PYOOP Workshop 2025 | David Koch

Branches

The commit history (commit tree) does not have to be linear!

[testingj
v

@ O

1

[bugfix/plots)

A branch points to a commit and is automatically updated when a new commit is
added.

Version control | PYOOP Workshop 2025 | David Koch

Branches

The commit history (commit tree) does not have to be linear!

[testingj

(in)

1

[bugfix/plots)

A branch points to a commit and is automatically updated when a new commit is
added.

Version control | PYOOP Workshop 2025 | David Koch

Branches

Create a new branch based on the latest commit and switch to it:

git checkout -b <new-branch-name>

Switch to an existing branch (only works if the working directory is clean — no
unstaged files):

git checkout <branch-name>

List existing branches and see which branch you're currently on:

git branch

Version control | PYOOP Workshop 2025 | David Koch

main

make plot red

Version control | PYOOP Workshop 2025 | David Koch

10

rewrite analysis
in columnar style

1

[/parallelize J

V

make plot red

Version control | PYOOP Workshop 2025 | David Koch

11

rewrite analysis
in columnar style

1

[/parallelize J

@

make plot red improve style

Version control | PYOOP Workshop 2025 | David Koch

12

rewrite analysis
in columnar style

add dask config

V

@

f

[parallelize J

make plot red improve style

Version control | PYOOP Workshop 2025 | David Koch

13

Merging

git checkout <branch-to-merge-into>
git merge <branch-to-merge> --no-edit

rewrite analysis .
in columnar style add dask config

f

(parallelize]

main

a0
A
make plot red improve style merge branch 'parallelize'
into main

Version control | PYOOP Workshop 2025 | David Koch

14

Merge Conflicts

In some situations git can't automatically merge — Merge Conflict!

make plot blue

make plot red ?2??

CONFLICT (content): Merge conflict in analsis.py
Automatic merge failed; fix conflicts and then commit the result.

Version control | PYOOP Workshop 2025 | David Koch

15

Resolving Merge Conflicts

Git marks the spots where conflicting changes need to be merged manually:

<<<<<<< HEAD
plt.hist(df["B0 _mbc"], range=(5.2, 5.3), color="red", bins=20)

plt.hist(df["B0_mbc"], range=(5.2, 5.3), color="blue", bins=20)
>>>>>>> styling

To resolve the conflict, remove the markers (<<< HEAD , - >>> other-branch)

and decide which change to keep. Then:

git add . # stage all changes
git commit # finish the merge

or abort the merge
git merge --abort

Version control | PYOOP Workshop 2025 | David Koch 16

Resolving Merge Conflicts

Many code editors assist in resolving merge conflicts with color highlights and
"accept incoming/current changes" buttons.

Example VSCode:

15 df = ak.concatenate(data)

16
Accept Current Change | Accept Incoming Change | Accept Both Changes | Compare Changes

17 <<<<<<< HEAD (Current Change)

18 plt.hist(df["BO mbc"], range=(5.2, 5.3), color="red", bins=20)
19 —t—t————t—

20 plt.hist(df["BO® mbc"], range=(5.2, 5.3), color="green", bins=20)
21 >>>>>>> colors (Incoming Change)

22 plt.title("BO mbc")

Version control | PYOOP Workshop 2025 | David Koch 17

Insert: Git in Code Editors

Most code editors support git! e.g., VSCode

SOURCE CONTROL

“~ SOURCE CONTROL P = v U H -
Message (Ctrl+Enter to commit on "main”)
E_g +" Commit | ~ 227
2 228
“ Staged Changes 1 229
¥ gittutorial. md M 230
~ Changes 1 231
gittutorial.md M 232
233
234
235
236
~ COMMITS
%} Compare Working Tree with <bra... T}
» & Changes to push to origin on GitLab...
» ‘I dos and donts You, 10 minutes ago 337
> ‘T remotes You, 2 hours ago 238
» ‘I meraina You 3 hours ann 239
» COMMIT DETAILS
» FILE HISTORY
» BRANCHES (1)
> REMOTES (1)
» STASHES 240
241
» TAGS 242
» WORKTREES 243
> SEARCH & COMPARE 244

@0MA0 —INSERT-

¢ }° main*+

20131

¥ gittutorial.md M

¥ qgittutorialmd > [=] # Versionsverwaltung mit git

¥ gittutorial. md (Working Tree) M X

Konflikten mit farbigen Markierungen und "accept
incoming/current changes"-Buttons.

Beispiel VSCode:

! [drop-shadow] (img/vscode-merge.png)

Einschub: Git in Code-Editoren

Die meisten Code-Editoren unterstitzen git. z.B.
VSCode

#iH Gitignore

Viele Files sollten nicht von git getrackt werden,
z.B. kompilierte Programme, caches, logs,
\rightarrow " .gitignore’ ist ein File, das
Wildcards zu allen Dateien enthalt, die git
ignorieren soll

" “bash

ignore compiled python
__pycache [

*.pyc

13
12

10

FN S, s I B s I Vs

=MW

240

[E =S PR N

W~ oW

i g A P A € -

[=] ## Ok cool, wie benutze ich das? » (=] ### Einschub: Git in Code-Editoren

Konflikten mit farbigen Markierungen und "accept
incoming/current changes”-Buttons.

Beispiel vSCode:

I [drop-shadow] (img/vscode-merge.png)

Einschub: Git in Code-Editoren

- Die meisten Code-Editoren unterstitzen git! z.B.
+ VSCode

1[1(img/vscode-git.png)

#i## Gitignore

Viele Files sollten nicht von git getrackt werden,
z.B. kompilierte Programme, caches, logs,
\rightarrow " .gitignore” ist ein File, das
Wildcards zu allen Dateien enthalt, die git
ignorieren soll

" “bash

ignore compiled python
__pycache [

*.pyc

Ln 240, Col4 Spaces:4 UTF-8 LF Markdown [

18

Remotes

A git repository can have one or
more remotes, identical copies on a
server like

e https://github.com

e https://gitlab.com

e https://gitlab.physik.uni-
muenchen.de

bertis—home-pc

gar-ws—etpku0dl

Version control | PYOOP Workshop 2025 | David Koch 19

https://github.com/
https://gitlab.com/
https://gitlab.physik.uni-muenchen.de/
https://gitlab.physik.uni-muenchen.de/

Remotes

A remotely existing repository can be copied using git clone .

git clone <url>

In the local copy, the remote is called origin per default.

Version control | PYOOP Workshop 2025 | David Koch

20

Remotes

If you already have a local repository and want to create a remote for it, go to your
chosen platform, create a blank repository there, copy the URL (not from the
browser, use the one endingin .git that appears in the instructions), then:

git remote add origin <url>
git remote -v # list remotes

origin Isthe local name of the remote repository. The name is arbitrary.

It is possible to have multiple remotes, e.g., git remote add fork other-url

Version control | PYOOP Workshop 2025 | David Koch 21

Remotes

To keep the local and remote repositories in sync, you use push and pull:

get most recent changes from the remote main branch
and merge them into the local main branch

git pull origin branch

git pull # shortcut

push my recent changes 1n some branch

to the remote 'origin'

git push [--set-origin] origin branch

git push only works if there are no newer changes on the remote! — always git
pull first

get remote changes without merging them into your local branch: git fetch

Version control | PYOOP Workshop 2025 | David Koch

22

Remotes - Authentication

Services like GitHub or GitLab require authentication to push (and to pull/clone
private repos). The remote URL determines the method:

e git@... — SSH authentication: upload your public SSH key to the server once

e https:// ... — HTTPS authentication: enter your password every time

SSH setup instructions:

e gitlab: https://docs.gitlab.com/ee/ssh/index.html

e github: https://docs.github.com/en/authentication/connecting-to-github-with-
ssh/adding-a-new-ssh-key-to-your-github-account

Version control | PYOOP Workshop 2025 | David Koch 23

https://docs.gitlab.com/ee/ssh/index.html
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

equests () Actions [Projects [0 wiki @ security [~ Insights

install script does rm -rf /usr for ubuntu #123
ginoputrino opened this issue on May 24, 2011 - 185 comments

Remotes - Not Just a Backup

L

|E| ginoputrino commented on May 24, 2011

social coding

An extra space at line 351:
rm -rf /usr /lib/nvidia-current/xorg/xorg

causes the install.sh script to do an rm -rf on the /usr directory for people installing in ubuntu.
e Create bug reports

Totally uncool dude!l! The script deletes everything under fusr. I just had to reinstall linux on my pc to recover.

Removing the space will fix this. Probably should do it quickly!!!

e Create pull requests
(/merge requests)

@ 831 62 = 961 & 296 = 119 ¥ 310 # 131 t 209

e Finalfantasykid commented on May 24, 2011
-

e Review code

Ya this happened to me. [wasn't sure what went wrong, but chaos ensued shortly after I ran the install script. I have to
work tommorow, and require my computer, so this could be a late night reinstalling/recovering my personal files. Oh well,
I guess that is what I get for alpha testing ;D

e Comment, like, react, ...

@ (& 12 (K2 @7 W26 (&4 (5

[Z MrMEEE added a commit that referenced this issue on May 24, 2011

’ GIANT BUG... causing /usr to be deleted... so sorry.... issue #123, i. = £J) a047bed

Version control | PYOOP Workshop 2025 | David Koch 24

Collaboration -- how to contribute to a project (Github / Gitlab)

1. Create an issue to report a bug or describe a feature request

2. Indicate that you would like to work on it! Best also describe what you plan to
do. example: github

© & jcass77 added (P on Dec 19, 2024

g davekch on Mar 17 Contributor

the easy fix of having a if event.jobstore != self._alias: return None guard at the start of each
handle_submission_event , handle_execution_event and handle_error_event method is currently not possible because
these methods are class methods. Is there a particular reason for this? The only place where I find these methods to be
referenced is in DjangoResultStoreMixin.register_event_listeners which is a regular method that also treats them as
regular methods (self.handle_submission_event , etc).

one could:

« turn the handle_*_event methods into regular methods so that they can reference self
+ add if event.jobstore !'= self._alias: return None atthe start of each of those methods

» replace cls.lock with self.lock

please let me know if I missed something. [§sisT=) sETs] R RT s Ty TNl A
®@

25

3. If you have the required permissions, create a branch + PR directly on that
remote repository

example: gitlab

Adding a button to generate bibtex citation entry Edit || 5
(O open [Issue created 5 months ago by Radek Zlebcik

Assignee Edit

It would be great to have an option to automatically generate a BibTeX entry for a)
Mone - assign yourself

citation for some analysis, like https://docs.belle2.org/pub_data/documents/57/

Something similar to inspire ("cite"): https://inspirehep.net/literature /1692393 Labels Edit
feat
I think this option was included in the older Belle Il system.
| Dat Edit
&0 o ©®) Add design §) Create merge request | v | ates '
il — Start: None
Merge request Due: None
Child it 0 Create merge reguest
e reme Milestone Edit
Branch None

Mo child items are currently assigned. Use child

smaller parts. Create branch

Parent Edit

Version control | PYOOP Workshop 2025 | David Koch

3. If you don't have permissions to create a branch on that remote, fork the project
first and create a branch there. example: github

& Watch 14 ~ %Y Fork 101 - ¥7 Star 686 =

Fork your own copy of jcass77/django-apscheduler

4. Fix the bug / implement the feature on your branch. Push your changes.

5. Create a merge request (MR, Gitlab language) / pull request (PR, Github
language) if there is none yet. example: github

This branch is 13 commits ahead of, 14 commits behind albertlauncher/python:main . i1 contribute - S syncfork -

@ This branch is 13 commits

& davekch update to new albert version go %) 482 Commits

ahead of
albertlauncher/
.archive [inhibit_sleep] Arct python:main 10 months ago
.github/workflows Use global issue te Open a pull request to 2 years ago
contribute your changes
arch_wiki [arch_wiki] v3 upstream. 4 months ago
aur [aur]v3 4 months ago
Open pull request
bitwarden [bitwarden] v3 4 months ago
coingecko [coingecko] v3 4 months ago

Version control | PYOOP Workshop 2025 | David Koch

5.2 Make sure to link the related issue by mentioning it (#<issue-number>).

Describe what you did. example: github

) Conversation 1 -o- Commits 1 [l Checks o Files changed 2

” davekch commented on Mar 21 Contributor

Resolves #1592

changes: A
« turned handler methods of DjangoResultsStoreMixin from classmethods to instance methods. see discussion in
() DjangoResultStoreMixin event handlers do not check event's job store #192

« make handler methods return None if the alias of the jobstore handling the event and the jobstore alias of the
incoming event do not match. this addresses the bug reported in the mentioned issue.

= tests: in all instantiations of JobExecutionEvent and JobSubmissionEvent , I changed the jobstere argumentto

6. Wait for your changes to be reviewed. Implement requested changes.

Version control | PYOOP Workshop 2025 | David Koch

28

7. Eventually, a maintainer may or may not approve and merge your changes.

—{)‘l" jecass77 commented on Mar 22 owner =+»
LGTM
®

You're all set — the 192-check-jobstore-before-handling-event branch can be safely deleted. If you

Pull request successfully merged and closed Delete branch
wish, you can also delete this fork of jcass77/django-apscheduler in the settings.

8. Don't be discouraged if your changes don't get approved in the end! You can
always maintain your own fork.

If it's mainly you working on your own project, it can still be helpful to follow this
process to make full use of Github's / Gitlab's project management features.

Version control | PYOOP Workshop 2025 | David Koch

29

Tags

give a name to a specific commit; commonly used to mark releases

git tag v0.3.0 # current HEAD i1s now also called v0.3.0
git push --tags

checkout also recognises tags:

git checkout v0.2.1

list all commits between version 0.2.11 and the current HEAD (useful for writing
changelogs!):

git log --oneline v0.2.11..

Version control | PYOOP Workshop 2025 | David Koch

30

Git LFS

e git diffs are line based — works only well for text

e when tracking a binary file with git and it changes, it has to store the new
version as a separate blob — .git folder size increases each time!

—> git Large File Storage to the rescue
https://git-lfs.com/

Version control | PYOOP Workshop 2025 | David Koch

31

https://git-lfs.com/

start using git Isf: git 1fs install

tell git to track files with a certain ending with LFS:

git 1fs track "x.root"
these settings are saved 1n .gitattributes
git add .gitattributes

continue using git like usual
git add somefile.root # ¢ will be tracked with git 1fs

want to switch to using git [fs? git 1fs migrate attention: this will rewrite history

Version control | PYOOP Workshop 2025 | David Koch

32

git lfs footguns / limitations

e if you clone a repo with LFS tracked files without having git Ifs installed, you will
only see "pointer-files"

e remote hosting service must support git lfs
e on Github: max 2GB per file

Version control | PYOOP Workshop 2025 | David Koch

33

Submodules
"git repository inside a git repository"
why?
e dependency on some fork of a library / need to pin to a commit

e sharing a common codebase in multiple projects

 "pseudo mono-repo™: managing multiple dependent repos in a parent-repo

e no trust in package repository to be available in the long future

— if the dependency / common codebase is properly packaged and published in
some package registry, there often is no need to use submodules

Version control | PYOOP Workshop 2025 | David Koch

34

Examples

[=mypackage
— [=mypackage
— [=plugins
— & 1nit__ .py
— [=my_plugin

— [=other_dudes_plugin @ 16e96ffa
— @ _1init__ .py

— & submoduleA.py

— (= tests

— {} pyproject.toml

Version control | PYOOP Workshop 2025 | David Koch

< submodule

35

using submodules

cloning a repository that has submodules:

git clone --recursive <url>

pulling changes in submodules:
git submodule update

adding a submodule to a repository:

git submodule add <url> [<path>]
git add .gitmodules
git commit

Version control | PYOOP Workshop 2025 | David Koch

36

making changes to a submodule without tripping up

cd my-submodule

git add; git commit; git push
cd ..

git add my-submodule

git commit

footguns:

e forgetting to commit changes inside the submodule

o forgetting to push changes inside the submodule (git push inthe parent repo
does not push changes in the submodule to the submodule's remote)

Version control | PYOOP Workshop 2025 | David Koch

37

Notable mentions

e undo all unstaged changes without throwing them away: git stash ; bring
them back: git stash pop

 cloning only part of a (large) repository: sparse checkouts

git clone --filter=blob:none --no-checkout <url> & cd <repo>
git sparse-checkout 1nit --cone
git sparse-checkout set <path-i-want>

e cloning only part of the history, eg only the latest commit: shallow checkouts

git clone --depth 1 <url>

e see "where you've been": git reflog

Version control | PYOOP Workshop 2025 | David Koch

38

~/.gitconfig
random neat little tricks for your configuration

aliases: define your own git commands

[alias]
unstage = restore --staged
show a visual graph
graph = log --graph --full-history --all --color
latest-tag = describe --tags --abbrev=0
show all remote commits that are not yet merged into local

incoming = "!f() { git fetch & git log ..origin/$(git rev-parse --abbrev-ref HEAD); }; f"
show all local commits that are not yet pushed
outgoing = "!f() { git fetch & git log origin/$(git rev-parse --abbrev-ref HEAD)..; }; f"

allows you to type the command git unstage, git graph, ..

Version control | PYOOP Workshop 2025 | David Koch

39

~/.gitconfig
random neat little tricks for your configuration

conditional includes:

[includeIf "gitdir:/home/davekoch/"]
path = ~/.gitconfig-personal
[includeIf "gitdir:/home/davekoch/Documents/arbeit/"]

path = ~/.gitconfig-work

~/.gitconfig-work

[user]
name = David Koch
emall = david.kocha@physik.uni-muenchen.de

Version control | PYOOP Workshop 2025 | David Koch

40

What have we learned today?

how to use the basics of git: creating commits, inspecting diffs and the log
why and how to use branches, merging with and without conflicts

how to keep your local repository in sync with a remote repository: clone, push
& pull

how to make use of Github's / Gitlab's project management features to follow
the development cycle: issue — fork or branch — merge request — review —
merge

how to use tags to mark releases
how to use git Ifs

how to use submodules

Version control | PYOOP Workshop 2025 | David Koch

41

Exercise

https://github.com/davekch/PYOPP-2025-git-tutorial

Version control | PYOOP Workshop 2025 | David Koch

42

https://github.com/davekch/PYOPP-2025-git-tutorial

Backup

Version control | PYOOP Workshop 2025 | David Koch

43

Brief Insert: SHA

The "sha" of a commit is the output of a cryptographic hash function called SHA-1. All
information defining the commit (including parent commit!) is used as input.

e small change in input — completely different output
e one-way: input can't be derived from output

e no collisions: (almost) impossible to find two different inputs with same output

Version control | PYOOP Workshop 2025 | David Koch

S

mycode. py

3 def calculate(x, y):
-4
+ 4 X +y

SHA-1

David Koch —> (93579a040fd1d767b1bb27u
Mar 13, 2023 5:12pm GMT

implement calculation

mycode. py

3 def calculate(x, y):
-4
+ 4 X +y

SHA-1

David Koch = 3072717fc8cb51229bbeuu2y
Mar 13, 2023 5:12pm GMT

implement calculate

— the SHA / commit ID uniquely identifies a commit

Version control | PYOOP Workshop 2025 | David Koch

rebase

If for some reason you prefer to have a linear history, you can use git rebase

run over run over
start rewriting multiple files start rewriting multiple files

(muttiplefiles) git rebase main (muttiplefiles)
main main
v - ¥
aN
O @ o
make plot red improve style make plot red improve style

rebase creates new commits on top of main (in this example) and deletes the old

ones. This is rewriting history. Git will not allow you to push a branch with an altered
history unless you do git push --force.

Never rewrite history on branches other people work on too unless it's coordinated.
Rewriting history can cause lots of friction.

Version control | PYOOP Workshop 2025 | David Koch

46

The intuition that a branch is a
literal "branch" that branched
off some other branch works
well in many scenarios but it
has its limitations and it is
technically false.

But what is a branch?

Version control | PYOOP Workshop 2025 | David Koch

this is & branch

this is not a branch

In git, a branch is just a reference to a commit that gets
automatically updated when new commits are added on top.

This means:

e a branch not only contains the "offshoot" commits but the
entire history that came before its most recent commit
e there is no such thing as a base or a parent of a branch
e instead: common ancestor of two or more branches
That's for example the reason why you can't git rebase without

specifying a target (e.g., git rebase main): git does not know
your branch "branched-off" of main .

Inspect branches by looking into .git/refs/heads .

read more

Version control | PYOOP Workshop 2025 | David Koch

48

https://jvns.ca/blog/2023/11/23/branches-intuition-reality/

Gitignore

Many files shouldn't be tracked by git, e.g., compiled programs, caches, logs, ... —
.gitignore Is a file containing wildcards for files git should ignore.

1gnore compiled python
__pycache__/

*.pyc

1gnore pdfs

*.pdf

but not this one
lsuper-important.pdf

If a file is already tracked and you now want git to ignore it:

glit rm --cached <file>

Version control | PYOOP Workshop 2025 | David Koch

49

