
Testing

Nikolai Krug

LMU Munich

25.06.2025, Publish Your Own Python Package workshop, Aachen

1 / 25



Outline

Part 1: Motivation of testing and overview

Part 2: Live coding examples with pytest

Sources/further references:

• Martin Ritter’s slides from LMU collaborative software development lecture

• Chapter on testing from Henry Schneider’s software engineering in scientific computing

• PyTest training from Florian Bruhin

2 / 25

https://henryiii.github.io/se-for-sci/content/week03/testing.html
https://www.youtube.com/watch?v=ofPHJrAOaTE


When to test your code?

• Imagine you found a bug in your code

• There are large variety of possible causes you have in mind

• You might even have checked all these possible problems during development
(but not written persistent tests)
→ any later change in the code could reintroduce these problems
→ now you have to investigate all these possible causes manually again

Conclusion:

• Write persistent tests during development

• In a way that they can be run automatically

3 / 25



“Code without tests is bad code. It doesn’t matter how well writ-
ten it is; it doesn’t matter how pretty or object-oriented or well-
encapsulated it is. With tests, we can change the behavior of our
code quickly and verifiably. Without them, we really don’t know if
our code is getting better or worse.”
– Michael Feathers, Working Effectively with Legacy Code

4 / 25

https://www.goodreads.com/book/show/44919.Working_Effectively_with_Legacy_Code


Test levels/types
Unit testing to test single units of the program

• usually a single class or function

• harder to implement for complex functions/classes with dependencies

Integration testing to test multiple components software which depend on each other.

• run test scripts and check output

• easier to setup (also for coupled components)

• might be harder to interpret (where does the error come from?)

System testing to test the whole software with respect to the requirements

• usually test input data and output data

• might compare statistical distributions (i.e. resolutions)

• even harder to find cause of error

Operational acceptance testing is where you give it to the user for them to break it

• usually not done in a formal way in science.

• just wait for bug reports :D

5 / 25



Unit tests

Simple example: point class

• works, doesn’t crash

• phi is correct

• x,y is flipped

• Fixing x,y flip will break
calculation of phi

class Point2D:
def __init__(self, x, y):

self.x = y

self.y = x

def phi(self):

return math.atan2(self.x, self.y)

6 / 25



Unit tests

Simple example: point class

• works, doesn’t crash

• phi is correct

• x,y is flipped

• Fixing x,y flip will break
calculation of phi

class Point2D:
def __init__(self, x, y):

self.x = y

self.y = x

def phi(self):

return math.atan2(self.x, self.y)

6 / 25



Unit tests

Simple example: point class

• works, doesn’t crash

• phi is correct

• x,y is flipped

• Fixing x,y flip will break
calculation of phi

class Point2D:
def __init__(self, x, y):

self.x = y

self.y = x

def phi(self):

return math.atan2(self.x, self.y)

6 / 25



Unit tests

Simple example: point class

• works, doesn’t crash

• phi is correct

• x,y is flipped

• Fixing x,y flip will break
calculation of phi

class Point2D:
def __init__(self, x, y):

self.x = y

self.y = x

def phi(self):

return math.atan2(self.x, self.y)

→ Unit tests are precisely meant to find and prevent these issues
→ write small functions that test that the values are what we expect

6 / 25



What to test for?

This is the hardest part

• understand the correct behavior

• which input values cause problems?

Coverage analysis can be helpful

• there are tools to verify how much of your program is tested

Unit tests don’t guarantee an error-free program

• even “100%” test coverage in your project doesn’t guarantee error-free

• if you find a bug, add a unit test to make sure it doesn’t reappear

7 / 25



Test Driven Development

Often tests are written after the software is designed

• test coverage is typically low

• you have to understand what to test after you developed it

• writing tests might be huge effort (no testable units)

→Test Driven Development

• make testing part of the development

• write tests before implementing code

1. specify what the code should do
2. write tests to test for the specification
3. implement the specification

“There is a big difference between
mentally knowing about coupling and
feeling the pain of coupling. . . But
when we actually write tests, we feel
concrete pain. The concrete pain is
not because testing is difficult, it’s
because we need to change our
design.”
– Micheal Feathers, the deep synergy
between testability and good design

8 / 25

https://www.youtube.com/watch?v=4cVZvoFGJTUthe
https://www.youtube.com/watch?v=4cVZvoFGJTUthe


Test Driven Development

9 / 25



In simpler terms

For every new feature

1) Write a failing test

2) Write code until it passes

3) Clean up / refactor

10 / 25



Test Driven Development

Advantages of TDD

• leads to more robust and correct code

• leads to less monolithic code with less dependencies (you need to write tests)

• helps in maintainability
• rerun tests after change to ensure software still works (regression testing)
• tests as “documentation”

• large test coverage helps localize problems

Disadvantages of TDD

• it takes more time. Maybe.

11 / 25



The shortest road is not always the best

. . . and not even the fastest one

12 / 25



Whitebox/Blackbox Testing

For writing tests it makes a difference whether your “know” the internal workings or not

Whitebox testing

• full access to the source

• can design tests by looking at the implementation

• disadvantage: tests might break when you change the implementation

Blackbox testing

• don’t look inside, just test the public interfaces

• derive tests from requirements

In practice usually a mixture of both (“Graybox testing”)
→better to have tests that you may need to modify/delete later than no tests at all

13 / 25



Testing in Python

Python comes with two distinct unit test frameworks

• doctest – Test interactive Python examples
This allows to write simple unit tests directly in the the docstring of functions or in text
files

• unittest – Unit testing framework
Normal unit test framework to write test cases/suites with and without fixtures

• allows more complex testing but has more overhead
• more similar to other languages

Often used extensions:

• pytest – “Helps you write better programs”
• Makes it easy to write small tests (minimal boilerplate)
• Scales to support complex functional testing as well
• Supports both unittests and doctests

• coverage.py – Measure code coverage
→ integrated with pytest using pytest --cov (need pytest-cov installed)

14 / 25

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://coverage.readthedocs.io


Testing in Python

Python comes with two distinct unit test frameworks

• doctest – Test interactive Python examples
This allows to write simple unit tests directly in the the docstring of functions or in text
files

• unittest – Unit testing framework
Normal unit test framework to write test cases/suites with and without fixtures

• allows more complex testing but has more overhead
• more similar to other languages

Often used extensions:

• pytest – “Helps you write better programs” ← start with this if unsure what to choose
• Makes it easy to write small tests (minimal boilerplate)
• Scales to support complex functional testing as well
• Supports both unittests and doctests

• coverage.py – Measure code coverage
→ integrated with pytest using pytest --cov (need pytest-cov installed)

14 / 25

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://coverage.readthedocs.io


Doctest

"""example.py"""

def atan2(y, x):

"""Return the arctangent of x,y

>>> atan2(0, 0)

0.0

>>> atan2(1, 0)

1.5707963267948966

>>> atan2(0, -1)

3.141592653589793

>>> atan2(-1, 0)

1.5707963267948966

"""

import math

return math.atan2(y, x)

$ python -m doctest example.py

*********************************************

File "example.py", line 12, in example.atan2

Failed example:

atan2(-1, 0)

Expected:

1.5707963267948966

Got:

-1.5707963267948966

*********************************************

1 items had failures:

1 of 4 in example.atan2

***Test Failed*** 1 failures.

Will run all code examples with >>> and
compare against output

15 / 25



Unittest

"""tests.py"""

import unittest

from example import atan2

from math import pi

class TestAtan2(unittest.TestCase):

def test_zeroone(self):

self.assertEqual(atan2(0, 1), 0)

def test_onezero(self):

self.assertEqual(atan2(1, 0), pi/2)

def test_oneminus(self):

self.assertEqual(atan2(0, -1), pi)

def test_minuszero(self):

self.assertEqual(atan2(-1, 0), pi/2)

$ python -m unittest tests

F...

=============================================

FAIL: test_minuszero (tests.TestAtan2)

---------------------------------------------

Traceback (most recent call last):

File "tests.py", line 16, in test_minuszero

self.assertEqual(atan2(-1, 0), pi/2)

AssertionError:

-1.5707963267948966 != 1.5707963267948966

---------------------------------------------

Ran 4 tests in 0.001s

FAILED (failures=1)

Will run all tests it can find

16 / 25



pytest

from example import atan2

from math import pi

def test_zeroone():

assert atan2(0, 1) == 0

def test_onezero():

assert atan2(1, 0) == pi/2

def test_oneminus():

assert atan2(0, -1) == pi

def test_minuszero():

assert atan2(-1, 0) == pi/2

$ python -m pytest tests.py

[...]

=============== FAILURES ================

____________ test_minuszero _____________

def test_minuszero():

> assert atan2(-1, 0) == pi/2

E assert -1.5707963267948966 == (3.

141592653589793 / 2)

E + where -1.5707963267948966 =

atan2(-1, 0)

test_example.py:20: AssertionError

======== short test summary info ========

FAILED test_example.py::test_minuszero

====== 1 failed, 3 passed in 0.22s ======

Will run all functions starting with test_

→ Less boilerplate for simple cases
17 / 25



Unit-test frameworks

Unit-test frameworks help with the overhead involved in

• Creating single test cases

• Organizing test cases

• Supporting test fixtures: common setup and cleanup for all test cases in a test suite

• Providing a test runner to execute all or some of the tests and provide the outcome

There are different approaches

• unittest follows a more classical, class based approach

• pytest provides a more pythonic interface
• less boilerplate but more implicit behavior
• also supports doctest/unittest
• not part of standard python (install with pip)

18 / 25



Fixtures and mocking/monkeypatching

Not everything can be tested that easily

Fixtures

• code to be run before/after a test to
prepare objects/data/files

• need to properly cleanup, tests should
succeed independent of their order

import pytest
from unittest.mock import Mock

@pytest.fixture
def dbobject():

return Mock(**{"query.return_value": 3})

def test_query(dbobject):
assert dbobject.query("foo") == 3
dbobject.query.assert_called_once_with("foo")

Mocking

• setup objects that imitate interfaces
(e.g. database connection)

• inspect how the mock is called

• and define what it should return

• alternative: monkeypatching
→ monkeypatch fixture in pytest

Parametrized Tests

• some tests might need to be run
repeatedly with different input

• can be automated to run different variants
of the same test

19 / 25

https://docs.pytest.org/en/6.2.x/monkeypatch.html


Summary

Test Driven Development

• improves code quality

• and design

• simplifies changing software

20 / 25



→ pytest-tutorial

21 / 25

https://github.com/nikoladze/pyopp-pytest-tutorial


Pytest plugins

Haven’t covered pytest plugins - some worth looking into:

• pytest-xdist

→ since tests are independent we can run them in parallel

• pytest-regression

→ automatically store and possibly regenerate expected values
→ great for testing that larger blocks of values stay the same

• pytest-mock

→ integration of unittest.mock into pytest (e.g. inspect if function was called)

• pytest-hypothesis

→ test properties that hold for arbitrary inputs by inputting random values (fuzzing)
→ useful for parsing code or finding security vulnerabilities

22 / 25

https://pytest-xdist.readthedocs.io
https://pytest-regressions.readthedocs.io
https://pytest-mock.readthedocs.io
https://hypothesis.readthedocs.io


Some recommendations

Reality is not perfect - strict rules/recipes don’t always work, but some tips:

• Need to write some code to try out what you are currently developing?
→ write it as a test

• Found a bug and fixed it?
→ write a test to ensure it doesn’t come back

• I don’t always write tests before implementation

• But i try to introduce tests as separate commits

• Wrote your test after the code and want to make sure it actually fails without?
→ can use git to move in/reorder history
(e.g. cherry-pick the commit that introduces the test or rebase)

• I don’t have experience testing GUI applications
→ good strategy is probably to focus on testing logic/backend
→ try to seperate the logic as much as possible from the GUI

23 / 25



Validation and other forms of testing

• Linters and Type checkers provide some forms of automated testing

• what’s called Validation usually much higher level, e.g. physics validation
→ look at physics results and compare between different versions of code
→ often involves humans looking at plots, but the plots can be produced automatically

• How Henry Schneider puts it in his tutorial:
• Verification (what we discussed so far)

the code is meeting the requirements you set (is this code correct?)
• Validation

the requirements you set made sense in the first place (is this the correct code?)

24 / 25

https://henryiii.github.io/se-for-sci/content/week03/testing.html


A/B Testing
A/B testing: (typically randomized) experiment between two setups

→ similar to validation: asks if the requirements are actually what we/the users want

(in this case the shortest road was actually at least as fast)

25 / 25


