Testing

Nikolai Krug
LMU Munich

25.06.2025, Publish Your Own Python Package workshop, Aachen

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

1/25

Outline

Part 1: Motivation of testing and overview

Part 2: Live coding examples with pytest

Sources/further references:
® Martin Ritter's slides from LMU collaborative software development lecture
® Chapter on testing from Henry Schneider’s software engineering in scientific computing

® PyTest training from Florian Bruhin

2/25

https://henryiii.github.io/se-for-sci/content/week03/testing.html
https://www.youtube.com/watch?v=ofPHJrAOaTE

When to test your code?

® |Imagine you found a bug in your code
® There are large variety of possible causes you have in mind

® You might even have checked all these possible problems during development
(but not written persistent tests)
— any later change in the code could reintroduce these problems
— now you have to investigate all these possible causes manually again

Conclusion:
® Write persistent tests during development

® In a way that they can be run automatically

3/25

“Code without tests is bad code. It doesn’t matter how well writ-
ten it is; it doesn’t matter how pretty or object-oriented or well-
encapsulated it is. With tests, we can change the behavior of our
code quickly and verifiably. Without them, we really don't know if
our code is getting better or worse.”

— Michael Feathers, Working Effectively with Legacy Code

4/25

https://www.goodreads.com/book/show/44919.Working_Effectively_with_Legacy_Code

Test levels/types

Unit testing to test single units of the program
® ysually a single class or function
® harder to implement for complex functions/classes with dependencies
Integration testing to test multiple components software which depend on each other.
® run test scripts and check output
® easier to setup (also for coupled components)
® might be harder to interpret (where does the error come from?)
System testing to test the whole software with respect to the requirements
® usually test input data and output data
® might compare statistical distributions (i.e. resolutions)
® even harder to find cause of error
Operational acceptance testing is where you give it to the user for them to break it
® ysually not done in a formal way in science.

® just wait for bug reports :D

5/25

Unit tests

Simple example: point class class PointoD:

® works, doesn't crash def __init__(self, x, y):
® phi is correct self.x =y
self.y = x

def phi(self):
return math.atan2(self.x, self.y)

6/25

Unit tests

Simple example: point class class PointoD:

® works, doesn't crash def __init__(self, x, y):
® phi is correct self.x =y
® x,y is flipped self.y = x

def phi(self):
return math.atan2(self.x, self.y)

6/25

Unit tests

Simple example: point class class PointoD:

® works, doesn't crash def __init__(self, x, y):
® phi is correct self.x =y
® x,y is flipped self.y = x
® Fixing x,y flip will break def phi(self):
calculation of phi return math.atan2(self.x, self.y)

6/25

Unit tests

Simple example: point class class PointaD:

® works, doesn't crash def __init__(self, x, y):
® phi is correct self.x =y
® x,y is flipped self.y = x
® Fixing x,y flip will break def phi(self):
calculation of phi return math.atan2(self.x, self.y)

— Unit tests are precisely meant to find and prevent these issues
— write small functions that test that the values are what we expect

6/25

What to test for?

This is the hardest part

® understand the correct behavior

® which input values cause problems?
Coverage analysis can be helpful

® there are tools to verify how much of your program is tested

Unit tests don’t guarantee an error-free program
® even “100%" test coverage in your project doesn’'t guarantee error-free

® if you find a bug, add a unit test to make sure it doesn't reappear

7/25

Test Driven Development

Often tests are written after the software is designed
® test coverage is typically low
® you have to understand what to test after you developed it
® writing tests might be huge effort (no testable units)

“There is a big difference between
mentally knowing about coupling and
—Test Driven Development feeling the pain of coupling. .. But
® make testing part of the development when we actually write tests, we feel
concrete pain. The concrete pain is
not because testing is difficult, it's
because we need to change our

® write tests before implementing code
1. specify what the code should do
2. write tests to test for the specification

3. implement the specification design.”
— Micheal Feathers, the deep synergy

between testability and good design

8/25

https://www.youtube.com/watch?v=4cVZvoFGJTUthe
https://www.youtube.com/watch?v=4cVZvoFGJTUthe

Test Driven Development

CODE-DRIVEN TESTING REFACTORING

&

The test succeeds. %\fsc’
<&

The test fails.

Check
whether
all the tests
The test
succeeds. succeed.

Some tests
fail.

The test fails.

. ° The code quality

satisfies.
Iterate
focus_

Alignment of the design
with known needs

9/25

focus
Completion of the contract
as defined by the test

In simpler terms

For every new feature
1) Write a failing test
2) Write code until it passes
3) Clean up / refactor

10/25

Test Driven Development

Advantages of TDD

® leads to more robust and correct code
® leads to less monolithic code with less dependencies (you need to write tests)

® helps in maintainability
® rerun tests after change to ensure software still works (regression testing)
® tests as “documentation”

® large test coverage helps localize problems

Disadvantages of TDD
® it takes more time. Maybe.

11/25

The shortest road is not always the best

. and not even the fastest one

12/25

Whitebox/Blackbox Testing

For writing tests it makes a difference whether your "know" the internal workings or not

Whitebox testing
® full access to the source
® can design tests by looking at the implementation
® disadvantage: tests might break when you change the implementation

Blackbox testing
® don't look inside, just test the public interfaces

® derive tests from requirements

In practice usually a mixture of both (“Graybox testing”)
—better to have tests that you may need to modify/delete later than no tests at all

13/25

Testing in Python

Python comes with two distinct unit test frameworks

® doctest — Test interactive Python examples
This allows to write simple unit tests directly in the the docstring of functions or in text
files

® unittest — Unit testing framework
Normal unit test framework to write test cases/suites with and without fixtures

® allows more complex testing but has more overhead
® more similar to other languages

Often used extensions:

® pytest — “Helps you write better programs”

® Makes it easy to write small tests (minimal boilerplate)
® Scales to support complex functional testing as well
® Supports both unittests and doctests

® coverage.py — Measure code coverage
— integrated with pytest using pytest --cov (need pytest-cov installed)

14/25

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://coverage.readthedocs.io

Testing in Python

Python comes with two distinct unit test frameworks

® doctest — Test interactive Python examples
This allows to write simple unit tests directly in the the docstring of functions or in text
files

® unittest — Unit testing framework
Normal unit test framework to write test cases/suites with and without fixtures

® allows more complex testing but has more overhead
® more similar to other languages

Often used extensions:
® pytest — “Helps you write better programs”’ <— start with this if unsure what to choose
® Makes it easy to write small tests (minimal boilerplate)

® Scales to support complex functional testing as well
® Supports both unittests and doctests

® coverage.py — Measure code coverage
— integrated with pytest using pytest --cov (need pytest-cov installed)

14/25

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/unittest.html
https://docs.pytest.org
https://coverage.readthedocs.io

nn ”emample.py nwmnn

def atan2(y, x):
"""Return the arctangent of x,y

>>> atan2(0, 0)

0.0

>>> atan2(1, 0)
1.5707963267948966

>>> atan2(0, -1)
3.141592653589793

>>> agtan2(-1, 0)
1.5707963267948966
import math

return math.atan2(y, x)

Doctest

$ python -m doctest example.py
skt ke ok sk sk ke ok stk stk sk ok skskosk skl sk ok stk sk ok sk sk ok sk ek sk sk sk sk ok ok ok
File "example.py", line 12, in example.atan2
Failed example:

atan2(-1, 0)
Expected:

1.5707963267948966
Got:

-1.5707963267948966
skt ke ok sk sk ke ok sk ke ksl sk ok skskosk skl sk ok stk sk ok sk sk sk ok sk ek sk sk ksl ok ok
1 items had failures:

1 of 4 in example.atan2
Test Failedx 1 failures.

Will run all code examples with >>> and
compare against output

15/25

Unittest

"”"tests.py”””

import unittest
from example import atan2
from math import pi

class TestAtan2(unittest.TestCase):
def test_zeroone(self):
self.assertEqual(atan2(0, 1), 0)

def test_onezero(self):
self.assertEqual(atan2(1, 0), pi/2)

def test_oneminus(self):
self.assertEqual(atan2(0, -1), pi)
def test_minuszero(self):
self .assertEqual(atan2(-1, 0), pi/2)

$ python -m unittest tests
F...

FAIL: test_minuszero (tests.TestAtan2)

Traceback (most recent call last):
File "tests.py", line 16, in test_minuszero
self.assertEqual(atan2(-1, 0), pi/2)
AssertionError:

-1.5707963267948966 != 1.5707963267948966

Ran 4 tests in 0.001s

FAILED (failures=1)

Will run all tests it can find

16/25

from example import atan2
from math import pi

def

def

def

def

test_zeroone():
assert atan2(0, 1) == 0

test_onezero():
assert atan2(1, 0) == pi/2

test_oneminus() :
assert atan2(0, -1) == pi

test_minuszero():
assert atan2(-1, 0) == pi/2

pytest

$ python -m pytest tests.py
[...]

=============== FAILURES
test_minuszero

def test_minuszero():
> assert atan2(-1, 0) == pi/2
E assert -1.5707963267948966 == (3.
141592653589793 / 2)
E + where -1.5707963267948966 =
atan2(-1, 0)

test_example.py:20: AssertionError
======== short test summary info ========
FAILED test_example.py::test_minuszero
======] failed, 3 passed in 0.22s ======

Will run all functions starting with test_
— Less boilerplate for simple cases
17/25

Unit-test frameworks

Unit-test frameworks help with the overhead involved in
® Creating single test cases
® Organizing test cases
® Supporting test fixtures: common setup and cleanup for all test cases in a test suite

® Providing a test runner to execute all or some of the tests and provide the outcome

There are different approaches
® unittest follows a more classical, class based approach

® pytest provides a more pythonic interface

® |ess boilerplate but more implicit behavior
® also supports doctest/unittest
® not part of standard python (install with pip)

18/25

Fixtures and mocking/monkeypatching

Not everything can be tested that easily import pytest
from unittest.mock import Mock
Fixtures .
Opytest.fixture
® code to be run before/after a test to def dbobject():
prepare objects/data/fHes return Mock(**{"query.return_value": 3})
® need to properly cleanup, tests should def test_query(dbobject):
succeed independent of their order assert dbobject.query("foo") == 3
dbobject.query.assert_called_once_with("foo")
Mocking
® setup objects that imitate interfaces Parametrized Tests
(e.g. database connection) ® some tests might need to be run
® inspect how the mock is called repeatedly with different input
® and define what it should return ® can be automated to run different variants
e alternative: monkeypatching of the same test

— monkeypatch fixture in pytest

19/25

https://docs.pytest.org/en/6.2.x/monkeypatch.html

Summary

Test Driven Development
® improves code quality
® and design
® simplifies changing software

20/25

— pytest-tutorial

21/25

https://github.com/nikoladze/pyopp-pytest-tutorial

Pytest plugins

Haven't covered pytest plugins - some worth looking into:
® pytest-xdist
— since tests are independent we can run them in parallel
® pytest-regression
— automatically store and possibly regenerate expected values
— great for testing that larger blocks of values stay the same
® pytest-mock
— integration of unittest.mock into pytest (e.g. inspect if function was called)
® pytest-hypothesis
— test properties that hold for arbitrary inputs by inputting random values (fuzzing)
— useful for parsing code or finding security vulnerabilities

22/25

https://pytest-xdist.readthedocs.io
https://pytest-regressions.readthedocs.io
https://pytest-mock.readthedocs.io
https://hypothesis.readthedocs.io

Some recommendations

Reality is not perfect - strict rules/recipes don't always work, but some tips:

Need to write some code to try out what you are currently developing?
— write it as a test

Found a bug and fixed it?
— write a test to ensure it doesn’'t come back

| don't always write tests before implementation
But i try to introduce tests as separate commits

Worote your test after the code and want to make sure it actually fails without?
— can use git to move in/reorder history
(e.g. cherry-pick the commit that introduces the test or rebase)

| don't have experience testing GUI applications
— good strategy is probably to focus on testing logic/backend
— try to seperate the logic as much as possible from the GUI

23/25

Validation and other forms of testing

® Linters and Type checkers provide some forms of automated testing

® what's called Validation usually much higher level, e.g. physics validation
— look at physics results and compare between different versions of code
— often involves humans looking at plots, but the plots can be produced automatically

® How Henry Schneider puts it in his tutorial:

® Verification (what we discussed so far)
the code is meeting the requirements you set (is this code correct?)

® Validation
the requirements you set made sense in the first place (is this the correct code?)

24/25

https://henryiii.github.io/se-for-sci/content/week03/testing.html

A /B Testing

A/B testing: (typically randomized) experiment between two setups
— similar to validation: asks if the requirements are actually what we/the users want

e
8

Parisi

e,
& er
< ey
] &
% 3 £
2 £ 2
% I e
% : er
% 2 nter
“
A £ 21 min o
15km &
&
£ &
i ©
g oq
5 N&C Physiothera
< O Him "
B " Str.
inikRWTH @ s
jssrate s &
oo & o
() g & it

(in this case the shortest road was actually at least as fast)
25/25

