
Documentation and Continuous
Integration (CI)

Anno Knierim

June 25, 2025

Documentation

Anno Knierim |Githubaknierim | PYOPP Workshop Documentation 2

https://github.com/aknierim

What You Will Learn:

→ Documenting your code using Sphinx
→ reStructuredText (reST/RST) syntax
→ Using ReadtheDocs

Anno Knierim |Githubaknierim | PYOPP Workshop Documentation 3

https://github.com/aknierim

Why Should We Document Our Code?

Well-documented code improves…

→ Maintainability: Future developers, debugging, …
→ Accessibility: Make your package easier to understand for new users
→ Collaboration: Docs as a shared knowledge source

Anno Knierim |Githubaknierim | PYOPP Workshop Documentation 4

https://github.com/aknierim

Documentation
Sphinx

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 5

https://github.com/aknierim

What is Sphinx? Docs: Sphinx

→ Open-source, extensible documentation generator written in Python

→ Multiple output formats: HTML, LaTEX (for PDF), ePub, and more…

→ Creates cross-references within your project and across different projects

→ Allows documentation using a mark-up language (reST)

→ Supports various docstring formats (some through extensions)

There are also alternatives to Sphinx, like MkDocs and pdoc, but Sphinx can be considered the industry
standard for Python docs.

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 6

https://www.sphinx-doc.org
https://github.com/aknierim

Installation

Sphinx can be installed via standard package managers:

→ Installing from PyPI using pip:
$ pip install -U sphinx

→ Conda/Mamba:
$ mamba install sphinx
$ conda install -c conda-forge sphinx

→ Debian/Ubuntu using apt:
apt install python3-sphinx

→ Fedora Linux, RHEL, CentOS using yum or dnf:
yum install python-sphinx
dnf install python-sphinx

→ Homebrew:
$ brew install sphinx-doc

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 7

https://github.com/aknierim

Getting Started

$ sphinx-quickstart docs
> Separate source and build directories (y/n) [n]: y
> Project name: ...
> Author name(s): ...
> Project release []: ...
> Project language [en]: ...

FOLDER-OPEN docs

FOLDER build

FOLDER-OPEN source

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

FOLDER-OPEN docs

FOLDER _build

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 8

https://github.com/aknierim

Getting Started

$ sphinx-quickstart docs
> Separate source and build directories (y/n) [n]: y
> Project name: ...
> Author name(s): ...
> Project release []: ...
> Project language [en]: ...

FOLDER-OPEN docs

FOLDER build

FOLDER-OPEN source

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

FOLDER-OPEN docs

FOLDER _build

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 8

https://github.com/aknierim

Getting Started

$ sphinx-quickstart docs
> Separate source and build directories (y/n) [n]: y
> Project name: ...
> Author name(s): ...
> Project release []: ...
> Project language [en]: ...

FOLDER-OPEN docs

FOLDER build

FOLDER-OPEN source

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

FOLDER-OPEN docs

FOLDER _build

FOLDER _static

FOLDER _templates

Python conf.py

File-Alt index.rst

TERMINAL make.bat

File Makefile

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 8

https://github.com/aknierim

Breakdown of the Generated Structure

FOLDER-OPEN build: Output directory for the docs.
FOLDER-OPEN _static: Directory for static elements such as images, icons, or logos.

FOLDER-OPEN _templates: Used to store Jinja templates for HTML page generation.
File-Alt index.rst: Root document; contains the root of the table of contents tree.

Python conf.py: Main configuration file written in Python.

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 9

https://jinja.palletsprojects.com/en/stable/
https://github.com/aknierim

Let's Build Our Docs

We will use the Makefile generated by sphinx-quickstart to build any format:

$ make <format>

So, for the HTML version:

$ make html

This will generate the HTML files for our docs inside the build directory. We can view the docs locally by
running a Python HTTP server (in this case from inside the docs directory):

$ python -m http.server -d build/html [port]

Note
[port] is optional, see python -m http.server --help.

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 10

https://github.com/aknierim

Alternative: sphinx-autobuild Docs: sphinx-autobuild

→ sphinx-autobuild rebuilds your documentation anytime it detects changes in your docs/ directory
→ Install it via pip:

$ pip install sphinx-autobuild
→ To build the docs, run:

$ sphinx-autobuild docs docs/build/html
This will start a server at http://127.0.0.1:8000/:
[sphinx-autobuild] Starting initial build
[sphinx-autobuild] > python -m sphinx build docs docs/build/html
...
[sphinx-autobuild] Serving on http://127.0.0.1:8000
[sphinx-autobuild] Waiting to detect changes...

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 11

https://github.com/sphinx-doc/sphinx-autobuild
https://github.com/aknierim

Setting Up conf.py

The conf.py file generated by Sphinx should look something like this:

Code | docs/conf.py
-- Project information ------------------------
project = 'pyopp'
copyright = '2025, Author'
author = 'Author'
release = 'v0.1'

-- General configuration ----------------------
extensions = []

templates_path = ['_templates']
exclude_patterns = []

-- Options for HTML output --------------------
html_theme = 'alabaster'
html_static_path = ['_static']

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 12

https://github.com/aknierim

Setting Up conf.py | Project Information
When using a pyproject.toml file for our project, we automatically get the metadata from that file using
tomli or tomllib (Python ⩾ 3.11):

Code | docs/conf.py
#!/usr/bin/env python3
import datetime
import sys
from pathlib import Path

import package # your package

if sys.version_info < (3, 11):
import tomli as tomllib

else:
import tomllib

pyproject_path = Path(__file__).parent.parent.parent / "pyproject.toml"
pyproject = tomllib.loads(pyproject_path.read_text())

project = pyproject["project"]["name"]
author = pyproject["project"]["authors"][0]["name"]
copyright = "{}. Last updated {}".format(

author, datetime.datetime.now().strftime("%d %b %Y %H:%M")
)
python_requires = pyproject["project"]["requires-python"]
rst_epilog = f"""
.. |python_requires| replace:: {python_requires}
"""

version = pyvisgen.__version__
release = version # full release version

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 13

https://github.com/aknierim

Setting Up conf.py | General Configuration

Sphinx extensions add functionality and customization. The following extensions are some of the extensions
we always use in our docs:

Code | docs/conf.py
extensions = [

"sphinx.ext.autodoc", # Imports modules and pulls in documentation from docstrings
"sphinx.ext.intersphinx", # Cross-references to other projects
"sphinx.ext.coverage", # Collects doc coverage stats
"sphinx.ext.viewcode", # Links to highlighted source code (i.e. "[source]" button)
"sphinx_automodapi.automodapi", # Automatically generates module documentation
"sphinx_automodapi.smart_resolver", # Helps resolving some imports
"numpydoc", # Support for the NumPy docstring format
"IPython.sphinxext.ipython_console_highlighting", # Syntax highlighting of ipython prompts
"sphinx_copybutton", # Adds a copybutton to code blocks

]

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 14

https://github.com/aknierim

Setting Up conf.py | General Configuration

Now we can set up some more settings for the extensions:

Code | docs/conf.py
gets rid of some errors during build
numpydoc_show_class_members = False
numpydoc_class_members_toctree = False

intersphinx_mapping = {
"numpy": ("https://numpy.org/doc/stable", None),
...

}

suppress_warnings = ["intersphinx.external"] # sometimes necessary

templates_path = ["_templates"]
exclude_patterns = ["build", "Thumbs.db", ".DS_Store", "changes", "*.log"]

source_suffix = ".rst" # Set .rst files as source files for docs
master_doc = "index" # index.rst as root file

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 15

https://github.com/aknierim

Setting Up conf.py | General Configuration

Some extensions are external and need to be installed separately in your environment:

$ mamba install sphinx-automodapi numpydoc pydata-sphinx-theme sphinx-copybutton

or with pip

$ pip install sphinx-automodapi numpydoc pydata-sphinx-theme sphinx-copybutton

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 16

https://github.com/aknierim

Setting Up conf.py | HTML And Theme Options

HTML options set the look of your docs. The Sphinx community has created a variety of themes you can
choose from.

Code | docs/conf.py
html_theme = "pydata_sphinx_theme" # Modern, widely used theme
html_static_path = ["_static"]

html_file_suffix = ".html"

html_css_files = ["custom.css"] # Custom CSS settings like colors or fonts

html_favicon = "_static/favicon/favicon.ico" # Icon file for browser tabs

html_theme_options = {...} # Depends on the theme

html_title = f"{project}" # e.g. your project name
htmlhelp_basename = project + "docs"

Check out Sphinx Themes Gallery for a curated list of available themes: sphinx-themes.org

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 17

https://sphinx-themes.org/
https://github.com/aknierim

Filling the Docs With Some API References

We will create the API references (semi-)automatically in a few steps:

1. Copy the structure of your actual package

2. Populate every subdirectory with a index.rst
3. Create separate .rst files for every submodule

FOLDER-OPEN package

FOLDER-OPEN module1

Python __init__.py

Python submodule_a.py

Python submodule_b.py

FOLDER-OPEN module2

Python __init__.py

Python submodule_c.py

Python __init__.py

FOLDER-OPEN docs

FOLDER-OPEN api-reference

FOLDER-OPEN module1

File-Alt index.rst

File-Alt submodule_a.rst

File-Alt submodule_b.rst

FOLDER-OPEN module2

File-Alt index.rst

File-Alt submodule_c.rst

File-Alt index.rst
...

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 18

https://github.com/aknierim

Filling the Docs With Some API References

We will create the API references (semi-)automatically in a few steps:

1. Copy the structure of your actual package
2. Populate every subdirectory with a index.rst

3. Create separate .rst files for every submodule

FOLDER-OPEN package

FOLDER-OPEN module1

Python __init__.py

Python submodule_a.py

Python submodule_b.py

FOLDER-OPEN module2

Python __init__.py

Python submodule_c.py

Python __init__.py

FOLDER-OPEN docs

FOLDER-OPEN api-reference

FOLDER-OPEN module1

File-Alt index.rst

File-Alt submodule_a.rst

File-Alt submodule_b.rst

FOLDER-OPEN module2

File-Alt index.rst

File-Alt submodule_c.rst

File-Alt index.rst
...

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 18

https://github.com/aknierim

Filling the Docs With Some API References

We will create the API references (semi-)automatically in a few steps:

1. Copy the structure of your actual package
2. Populate every subdirectory with a index.rst
3. Create separate .rst files for every submodule

FOLDER-OPEN package

FOLDER-OPEN module1

Python __init__.py

Python submodule_a.py

Python submodule_b.py

FOLDER-OPEN module2

Python __init__.py

Python submodule_c.py

Python __init__.py

FOLDER-OPEN docs

FOLDER-OPEN api-reference

FOLDER-OPEN module1

File-Alt index.rst

File-Alt submodule_a.rst

File-Alt submodule_b.rst

FOLDER-OPEN module2

File-Alt index.rst

File-Alt submodule_c.rst

File-Alt index.rst
...

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 18

https://github.com/aknierim

__init__.py Docs: Import System Docs: PEP420

→ __init__.py create structure in your package
→ This creates modules in your package

→ Packages without __init__.py are namespace packages

→ Sphinx (automodapi) requires the module structure to understand your package

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 19

https://docs.python.org/3/reference/import.html
https://peps.python.org/pep-0420/
https://github.com/aknierim

Filling the Docs With Some API References

For now, the API reference will still be empty. We have to fill in the index.rst files to change that. Starting
with api-reference/index.rst:

Code |
docs/api-reference/index.rst
.. _api-reference:

API Reference

.. toctree::
:maxdepth: 1
:glob:

*/index

We add…
1. A tag .. _api-reference: to the file so we can
reference it if necessary

2. A title, e.g., “API Reference”

3. The table of contents with the .. toctree:: directive
→ And add only index.rst files from the

subdirectories to the TOC

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 20

https://github.com/aknierim

Filling the Docs With Some API References

Code |
docs/api-reference/[module]/index.rst
.. _module1:

Module1 (:mod:`package.module1`)

.. currentmodule:: package.module1

Introduction
============

:mod:`package.module1` contains useful methods and classes.

Submodules
==========

.. toctree::
:maxdepth: 1
:glob:

submodule_a
submodule_b

Reference/API
=============

.. automodapi:: package.module1
:no-inheritance-diagram:

Now, we do the same for the index.rst files in
the module directories:

We add…
1. A tag and module title

2. The .. currentmodule:: directive to let
Sphinx know that classes and functions
documented from here on are in the given
module

3. (optional) Some introduction to the module

4. The table of contents for the submodules of
the module

5. The .. automodapi:: directive for the
current module to get a list of classes and
functions

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 21

https://github.com/aknierim

Filling the Docs With Some API References

Finally, we write the submodule .rst files:

Code | docs/api-
reference/[module]/[submodule].rst
.. _data:

**
submodule_a (:mod:`package.module1.submodule_a`)
**

.. currentmodule:: package.module1.submodule_a

Submodule of :mod:`package.module1`.

Reference/API
=============

.. automodapi:: package.module1.submodule_a
:inherited-members:

We add…
1. A tag, the submodule title, and the
.. currentmodule:: directive

2. (optional) Some introduction to the
submodule

3. The .. automodapi:: directive for the
current submodule to get a list of classes
and functions

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 22

https://github.com/aknierim

Creating a Nice Landing Page and Adding the API Reference

Code | docs/index.rst
:html_theme.sidebar_secondary.remove: true
:html_theme.sidebar_primary.remove: true

.. _package:

=======
Package
=======

.. currentmodule:: package

Version: |version| | **Date**: |today|

Useful links: `Source Repository <https://github.com/your_project/package>`__ |
`Issue Tracker <https://github.com/your_project/package/issues>`__ |
`Pull Requests <https://github.com/your_project/package/pulls>`__

License: `MIT <https://github.com/your_project/package/blob/main/LICENSE>`__

Python: |python_requires|

.. toctree::
:maxdepth: 1
:hidden:

api-reference/index
changelog

Anno Knierim |Githubaknierim | PYOPP Workshop Sphinx 23

https://github.com/aknierim

Documentation
reStructuredText (reST)

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 24

https://github.com/aknierim

reST Basics Docs: reST

→ Paragraphs are the fundamental text blocks in reST, i.e., text chunks at the same indentation and
separated by blank lines

→ Inline Markup:

Code
text **text** ``text``

Output
text text text

→ Hyperlinks:

Code
This text contains `a link`_.

.. _a link: https://erumdatahub.de

This text contains an
embedded `link <https://erumdatahub.de>`__.

Output
This text contains a link.

This text contains an embedded link.

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 25

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://erumdatahub.de
https://erumdatahub.de
https://github.com/aknierim

Tables

→ Basic tables are similar to Markdown tables
→ Rendering depends on your theme

Code
+------------------+------------+----------+
| Header 1 | Header 2 | Header 3 |
+==================+============+==========+
| Column 1, Row 1 | 1.00 | 42 |
+------------------+------------+----------+
| Column 1, Row 2 | ... | ... |
+------------------+------------+----------+

CSV Tables
.. csv-table:: Table Title

:header: "Header 1", "Header 2", "Header 3"
:widths: 15, 10, 10

"Column 1, Row 1", 1.00, 42
"Column 1, Row 2", ..., ...

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 26

https://github.com/aknierim

Lists

Code
* A bulleted list

- This is also a bulleted list.
- But this one has two items, and this
item has two lines

1. A numbered list.

#. Autonumbering is also possible.
#. This is done using a ``#`` sign.

Nested Lists
* A bulleted list.

* With a nested bulleted list.
* Nested lists have to be separated by a blank line

* This continues the parent list.

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 27

https://github.com/aknierim

Headings

Code
####
Part
####

Chapter

Section
=======

Subsection

Subsubsection
^^^^^^^^^^^^^

Paragraph
"""""""""

→ The structure is technically determined by order of occurance
→ But: For better readability stick to the same order throughout

your docs, e.g., the one shown here (recommended)

→ While overlines are optional, they are encouraged for parts and
chapters

→ Any of the following symbols are valid for over- and underlines:
* = - ^ " + _ ~ ` . , : ; ' ! ? & $ % () [] { }
< > @ \ / |

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 28

https://github.com/aknierim

Roles, Directives, and Field Lists Docs: Roles Docs: Directives Docs: Field Lists

Roles
Roles are inline pieces of explicit markup that are understood by Sphinx. The syntax is:

:rolename:`content`

Examples:
:mod:`package.module1` :code:`foo = 42` :math:`F = m\cdot a`

Directives and Field Lists
Directives are blocks of explicit markup that are understood by Sphinx. The syntax is:
.. directive:: [(optional) elements depending on directive]

[:(optional) field list:]

[Body elements of the directive]

Examples:
.. image:: picture.png

:width: 90%
:alt: A nice picture.

.. code-block::
:caption: A code block.

def func(param: int) -> int: ...

Anno Knierim |Githubaknierim | PYOPP Workshop reStructuredText (reST) 29

https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/field-lists.html
https://github.com/aknierim

Documentation
Docstrings

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 30

https://github.com/aknierim

Docstrings

Most of the documentation work will require you to write docstrings. The three most common formats are:

→ reST
→ Google
→ numpydoc

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 31

https://github.com/aknierim

Docstrings | reST Docs: reST Style

Structure
"""[Summary of your method]

:param [Parameter name]: [Parameter description]
:type [Parameter name]: [Parameter type](, optional)
:returns: [Return description]
:rtype: [Return type]
:raises [Exception class]: [Exception description]
"""

Example
"""This is a reST-style docstring.

:param param1: First parameter.
:type param1: float
:param param2: Second parameter, defaults to None.
:type param2: str, optional
:returns: Some return value.
:rtype: int
:raises ValueError: Raises an exception.
"""

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 32

https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
https://github.com/aknierim

Docstrings | Google Docs: Google Style

Structure
"""[Summary of your method]

Args:
[Parameter name] ([Parameter type](, optional)): [Parameter description]

Returns:
[Return type]: [Return description]

Raises:
[Exception class]: [Exception description]

"""

Example
"""This is a Google-style docstring.

Args:
param1 (float): First parameter.
param2 (:obj:`str`, optional): Second parameter. Defaults to None.

Returns:
int: Some return value.

Raises:
ValueError: Raises an exception.

"""

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 33

https://google.github.io/styleguide/pyguide.html
https://github.com/aknierim

Docstrings | numpydoc Docs: numpydoc

Structure
"""[Summary of your method]

Parameters

[Parameter name] : [Parameter type](, optional)

[Parameter description]

Returns

[Return name or type](: [Return type if name was given])

[Return description]

Raises

[Exception class]

[Exception description]
"""

Example
"""This is a numpydoc-style docstring.

Parameters

param1 : float

First parameter.
param2 : str, optional

Second parameter. Default: None

Returns

int

Some return value.

Raises

ValueError

Raises an exception.
"""

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 34

https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/aknierim

Type Hinting Docs: typing

→ Type hinting is the practice of declaring types for variables using a colon : after the variable name:
Code
foo: int = 1
bar: str = "pyopp"
baz: np.ndarray = np.array([...])

→ Usually, type hinting is only applied to function definitions:
Code
def func(param1: int, param2: int=42) -> int:

res = param1 + param2
return res

→ Type hinting offers…
→ Improved code readability
→ IDE and linting support, e.g., through code completion
But: It is not enforced at runtime and one has to consider dynamic types.

Anno Knierim |Githubaknierim | PYOPP Workshop Docstrings 35

https://docs.python.org/3/library/typing.html
https://github.com/aknierim

Documentation
Changelogs

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 36

https://github.com/aknierim

Why Track Changes and Use Changelogs?

→ Changelogs are curated, chronogical lists of
notable changes

→ Users and (future) contributors of your package
will be able to see what changes have been
made for each release

→ Changes should be grouped by type for better
readability

→ Every new version of your package should have
an entry

Package v0.2.0 (2025-06-19)
===========================

API Changes

Bug Fixes

- Fixed a bug in ``submodule_a``
- Fixed another bug in ``submodule_b``

[`#1
<https://github.com/your_project/package/pull/1>`__]↪

New Features

- Added ``module2``

Maintenance

- Deleted unused code

Refactoring and Optimization

- Refactored parts of ``submodule_a``

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 37

https://github.com/aknierim

Create Changelogs With towncrier Docs: towncrier

→ towncrier is a tool to create changelogs for your project

→ Instead of adding every little change, you will create “news fragments” that contain only notable changes

→ towncrier will read these fragments and help you create a changelog for each release of your package

→ Install towncrier via pip or mamba/conda:
$ pip install towncrier
$ mamba install towncrier

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 38

https://towncrier.readthedocs.io/en/stable/index.html
https://github.com/aknierim

Setting Up towncrier

→ towncrier is configured using your pyproject.toml or a towncrier.toml file

→ A basic configuration is telling towncrier where to find news fragments and where to create the
changelog:
Code
[tool.towncrier]

package = "package"
directory = "docs/changes"
filename = "CHANGES.rst"

→ We can also make use of a template and issue format: (External-Link-Alt Good example for a template)
Code
[tool.towncrier]

...
template = "docs/changes/template.rst"
let towncrier create proper links to the merged PR
issue_format = "`#{issue}

<https://github.com/your_project/package/pull/{issue}>`__"↪

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 39

https://github.com/astropy/astropy/blob/main/docs/changes/template.rst
https://github.com/aknierim

Setting Up towncrier

Code
[tool.towncrier]

...
[tool.towncrier.fragment.feature]

name = "New Features"
showcontent = true

[tool.towncrier.fragment.bugfix]
name = "Bug Fixes"
showcontent = true

[tool.towncrier.fragment.api]
name = "API Changes"
showcontent = true

[tool.towncrier.fragment.optimization]
name = "Refactoring and Optimization"
showcontent = true

[tool.towncrier.fragment.maintenance]
name = "Maintenance"
showcontent = true

[[tool.towncrier.section]]
name = ""
path = ""

→ You can also set up the fragment types you are
using

→ Fragments are saved under the directory
path set in the config, e.g., docs/changes/

→ The syntax for the fragment names is
[PR Number].[fragment type].rst

Examples:
1.feature.rst
1.bugfix.rst
2.maintenance.rst

→ Multiple fragments can have the same leading
PR number if they belong to the same PR

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 40

https://github.com/aknierim

Building the Changelog and Adding It to the Docs

→ To build the changelog, towncrier provides a CLI tool:
$ towncrier build

→ This creates the CHANGES.rst file set in the config, or prepends to it if it already exists

→ towncrier will ask you whether it can delete the used news fragments automatically

→ To include the changelog in the docs, you can create a file docs/changelog.rst:
Code

Change Log

.. include:: ../CHANGES.rst

Anno Knierim |Githubaknierim | PYOPP Workshop Changelogs 41

https://github.com/aknierim

Documentation
Hosting and Publishing

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 42

https://github.com/aknierim

Hosts For Your Docs

So far, the docs are either in your local repository or also pushed to the remote, but not published. There are
several ways to host your docs to make them available for your community:

→ ReadtheDocs
→ GitHub pages
→ Other online hosting services

The most common host is ReadtheDocs, which will be introduced in the following.

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 43

https://github.com/aknierim

ReadtheDocs

→ Free, if your package is open-source, i.e., publically available on, e.g., GitHub or GitLab

→ No secret handling required

→ Allows you to preview your docs on every PR

→ Works seamlessly with Sphinx

→ Automatically builds the docs from your main branch

→ Supports downloading the docs in PDF or other formats

→ Hosting supported by ethical ads

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 44

https://github.com/aknierim

Getting Started With ReadtheDocs

1. Set up a .readthedocs.yaml file in your repository:
Code
version: 2

build:
os: ubuntu-24.04
apt_packages:
- graphviz

tools:
python: "3.13" # or whatever Python version you prefer

python:
install:
- method: pip
path: .
extra_requirements:
- docs

sphinx:
configuration: docs/conf.py

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 45

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Getting Started With ReadtheDocs

2. Sign up/log in to ReadtheDocs (Community),
e.g., via GitHub, GitLab, or Bitbucket

3. In your dashboard, click on “Add project”

4. Search for your repository and click “Continue”

5. Configure the basic settings and click “Next”

6. Ensure the .readthedocs.yaml file exists in
your repository, and click “This file exists”

7. Your docs should now be building and will be
rebuilt anytime a PR is merged into main

Anno Knierim |Githubaknierim | PYOPP Workshop Hosting and Publishing 46

https://github.com/aknierim

Continuous Integration (CI)

Anno Knierim |Githubaknierim | PYOPP Workshop Continuous Integration (CI) 47

https://github.com/aknierim

What You Will Learn:

→ Using CIs to test your code on GitHub or GitLab for multiple platforms
→ Code coverage
→ Linting using your CI
→ Adding badges to your repository

Anno Knierim |Githubaknierim | PYOPP Workshop Continuous Integration (CI) 48

https://github.com/aknierim

What is Continuous Integration?

→ A practice where tests and builds are run automatically, e.g., after code changes were merged/committed

→ Goal: Find bugs, improve software quality (e.g., performance) and ensure your software runs on different
platforms

→ Every commit triggers a CI job

→ Addressing failed CI jobs before merging a PR ensures code quality

→ Running tests locally before committing adds an extra layer of ensuring code quality

Note
The quality of your CI strongly depends on the quality of your tests.
→ Requires effort beforehand.

Anno Knierim |Githubaknierim | PYOPP Workshop Continuous Integration (CI) 49

https://github.com/aknierim

CI Services

There are many CI services to choose from. Three widely used services are:

Jenkins Self-hosted, open-source CI service. One of the oldest CI services, going back as far as 2005
when it was called Hudson.

GitHub Actions A modular CI service developed by Microsoft. Multiple OS support and easy to maintain.

GitLab CI Widely used in GitLab repos, but also works with other services. Can be self-hosted or hosted
centrally by GitLab.

→ We will focus on GitHub Actions (GHA) and GitLab CI in the following.

Anno Knierim |Githubaknierim | PYOPP Workshop Continuous Integration (CI) 50

https://github.com/aknierim

Continuous Integration (CI)
Getting Started | GitHub Actions

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 51

https://github.com/aknierim

Getting Started | GitHub Actions Docs: GitHub Actions

1. Create a ci.yml file in the .github/workflows directory (create the directory if necessary)
2. Set up some basics in the CI file:

Code
name: CI

on:
push:
branches:
- main

tags:
- '**'

pull_request:

env:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

2.1 Name the CI, especially if you are running
multiple CIs/CDs

2.2 Set up when the CI should be run, e.g., on
every push/merge to main and for every
PR

2.3 Set up some environment variables, such
as the matplotlib backend and color
output for pytest

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 52

https://docs.github.com/en/actions
https://github.com/aknierim

Getting Started | GitHub Actions Docs: GitHub Actions

1. Create a ci.yml file in the .github/workflows directory (create the directory if necessary)
2. Set up some basics in the CI file:

Code
name: CI

on:
push:
branches:
- main

tags:
- '**'

pull_request:

env:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

2.1 Name the CI, especially if you are running
multiple CIs/CDs

2.2 Set up when the CI should be run, e.g., on
every push/merge to main and for every
PR

2.3 Set up some environment variables, such
as the matplotlib backend and color
output for pytest

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 52

https://docs.github.com/en/actions
https://github.com/aknierim

Getting Started | GitHub Actions Docs: GitHub Actions

1. Create a ci.yml file in the .github/workflows directory (create the directory if necessary)
2. Set up some basics in the CI file:

Code
name: CI

on:
push:
branches:
- main

tags:
- '**'

pull_request:

env:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

2.1 Name the CI, especially if you are running
multiple CIs/CDs

2.2 Set up when the CI should be run, e.g., on
every push/merge to main and for every
PR

2.3 Set up some environment variables, such
as the matplotlib backend and color
output for pytest

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 52

https://docs.github.com/en/actions
https://github.com/aknierim

Getting Started | GitHub Actions Docs: GitHub Actions

1. Create a ci.yml file in the .github/workflows directory (create the directory if necessary)
2. Set up some basics in the CI file:

Code
name: CI

on:
push:
branches:
- main

tags:
- '**'

pull_request:

env:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

2.1 Name the CI, especially if you are running
multiple CIs/CDs

2.2 Set up when the CI should be run, e.g., on
every push/merge to main and for every
PR

2.3 Set up some environment variables, such
as the matplotlib backend and color
output for pytest

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 52

https://docs.github.com/en/actions
https://github.com/aknierim

Getting Started | GitHub Actions

3. Set up a job for your CI that tests your code:
Code
jobs:

tests: # Name of the job
runs-on: ubuntu-latest

defaults:
run:
We need login shells (-l) for micromamba to work.
shell: bash -leo pipefail {0}

See About login shells... why login shells are necessary here.

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 53

https://github.com/mamba-org/setup-micromamba?tab=readme-ov-file#about-login-shells
https://github.com/aknierim

Getting Started | GitHub Actions Docs: actions/checkout Docs: setup-micromamba

3. Set up a job for your CI that tests your code (cont.):
Code
tests:
...

steps:
- uses: actions/checkout@v4

- uses: mamba-org/setup-micromamba@v1
with:

environment-file: environment.yml

- name: Install dependencies
run: |

python --version
pip install -e .[tests]
pip freeze
pip list

- name: List installed package versions (conda)
run: micromamba list

- name: Tests
run: |

pytest -vv --cov --cov-report=xml

Anno Knierim |Githubaknierim | PYOPP Workshop Getting Started | GitHub Actions 54

https://github.com/actions/checkout
https://github.com/mamba-org/setup-micromamba
https://github.com/aknierim

Continuous Integration (CI)
Code Coverage

Anno Knierim |Githubaknierim | PYOPP Workshop Code Coverage 55

https://github.com/aknierim

Code Coverage

Code coverage shows you how much of your code is covered by tests.

→ While the reports produced by pytest in the CI are nice, more elaborate reports are sometimes
desireable

→ Code review services provide such reports
→ Three commonly used services that are free for FOSS and support multiple languages are:

→ Codecov
→ SonarQube
→ Codacy

We will focus on Codecov here, because of its simplicity.

Anno Knierim |Githubaknierim | PYOPP Workshop Code Coverage 56

https://github.com/aknierim

Codecov Docs: Codecov

1. Sign up/log in to Codecov, e.g., via GitHub, GitLab, or Bitbucket
2. Select your repository from your dashoard
3. Select a setup option, e.g., “Using GitHub Actions”
4. Select an upload token. For a single repository, the repository token is sufficient
5. Add the token as repository secret
6. Update your CI to automatically upload the coverage to Codecov (after the Tests step of your job)

Code
- name: Tests
run: |
pytest -vv --cov --cov-report=xml

- name: Upload coverage to Codecov
uses: codecov/codecov-action@v4
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}

Important
NEVER share your token with anyone.

Anno Knierim |Githubaknierim | PYOPP Workshop Code Coverage 57

https://docs.codecov.com/docs/
https://github.com/aknierim

Continuous Integration (CI)
Multiple Platforms

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 58

https://github.com/aknierim

Multiple Platforms | GitHub Actions

→ So far we tested only on one platform

→ We have to ensure our package also runs on all target platforms and all target versions of Python

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 59

https://github.com/aknierim

Multiple Platforms | GitHub Actions

We will modify our CI to test on multiple platforms:

1. The first part remains the same:
Code
name: CI

on:
push:
branches:
- main

tags:
- '**'

pull_request:

env:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 60

https://github.com/aknierim

Multiple Platforms | GitHub Actions Docs: Matrix Strategies

2. This time, we will be using GitHub Actions’ matrix strategy to define multiple platforms:
Code
jobs:

tests:
runs-on: ${{ matrix.os }}
strategy:

matrix:
include:

- os: ubuntu-latest
python-version: "3.10"
install-method: mamba

- os: ubuntu-latest
python-version: "3.12"
install-method: mamba
extra-args: ["codecov"] # lead platform for code cov

- os: ubuntu-latest
python-version: "3.12"
install-method: pip

- os: macos-13
python-version: "3.10"
install-method: pip

defaults:
run:

We need login shells (-l) for micromamba to work.
shell: bash -leo pipefail {0}

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 61

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/running-variations-of-jobs-in-a-workflow
https://github.com/aknierim

Multiple Platforms | GitHub Actions
3. Adding steps:

Code
steps:

- uses: actions/checkout@v4
with:

fetch-depth: 0

- name: Prepare mamba installation
if: matrix.install-method == 'mamba' && contains(github.event.pull_request.labels.*.name,

'documentation-only') == false↪
env:

PYTHON_VERSION: ${{ matrix.python-version }}
run: |

setup correct python version
sed -i -e "s/- python=.*/- python=$PYTHON_VERSION/g" environment.yml

- name: mamba setup
if: matrix.install-method == 'mamba' && contains(github.event.pull_request.labels.*.name,

'documentation-only') == false↪
uses: mamba-org/setup-micromamba@v1
with:

environment-file: environment.yml
cache-downloads: true

- name: Python setup
if: matrix.install-method == 'pip' && contains(github.event.pull_request.labels.*.name, 'documentation-only')

== false↪
uses: actions/setup-python@v5
with:

python-version: ${{ matrix.python-version }}
check-latest: true

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 62

https://github.com/aknierim

Multiple Platforms | GitHub Actions

4. For macOS, we have to fix the Python path:
Code
steps:

- ...

- if: matrix.install-method == 'pip' && runner.os == 'macOS' &&
contains(github.event.pull_request.labels.*.name, 'documentation-only') == false↪

name: Fix Python PATH on macOS
run: |

tee -a ~/.bash_profile <<<'export PATH="$pythonLocation/bin:$PATH"'

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 63

https://github.com/aknierim

Multiple Platforms | GitHub Actions

5. Install dependencies and run tests:
Code
steps:

- ...

- name: Install dependencies
env:

PYTHON_VERSION: ${{ matrix.python-version }}
run: |

python --version
pip install -e .[tests]
pip freeze
pip list

- name: List installed package versions (conda)
if: matrix.environment-type == 'mamba'
run: micromamba list

- name: Tests
run: |

pytest -vv --cov --cov-report=xml

- name: Upload coverage to Codecov
uses: codecov/codecov-action@v4
env:

CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} # make sure you have this set as repository secret

Anno Knierim |Githubaknierim | PYOPP Workshop Multiple Platforms 64

https://github.com/aknierim

Continuous Integration (CI)
Linting With the CI

Anno Knierim |Githubaknierim | PYOPP Workshop Linting With the CI 65

https://github.com/aknierim

Linting With the CI

The linting job should preferably be started before the tests.

Code
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0

- uses: actions/setup-python@v5
with:
python-version: "3.12"

- name: Check README syntax
run: |
pip install restructuredtext-lint
restructuredtext-lint README.rst

- uses: pre-commit/action@v3.0.1
with:
extra_args: --files $(git diff origin/main --name-only)

Anno Knierim |Githubaknierim | PYOPP Workshop Linting With the CI 66

https://github.com/aknierim

Continuous Integration (CI)
Building the Docs With the CI

Anno Knierim |Githubaknierim | PYOPP Workshop Building the Docs With the CI 67

https://github.com/aknierim

Building the Docs With the CI

The docs job can be started last.

Code
jobs:
docs:

runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0

- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"

- name: Install doc dependencies
run: |
sudo apt update -y && sudo apt install -y git build-essential pandoc graphviz ffmpeg
pip install -U pip towncrier setuptools
pip install -e .[docs]
git describe --tags

- name: Build docs
run: make -C docs html

Anno Knierim |Githubaknierim | PYOPP Workshop Building the Docs With the CI 68

https://github.com/aknierim

Continuous Integration (CI)
Changelog CI

Anno Knierim |Githubaknierim | PYOPP Workshop Changelog CI 69

https://github.com/aknierim

Changelog CI

Code
name: Changelog

on:
pull_request:
should also be re-run when changing labels
types: [opened, reopened, labeled, unlabeled, synchronize]

env:
FRAGMENT_NAME: "docs/changes/${{ github.event.number }}.*.rst"

jobs:
changelog:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0

- name: Check for news fragment
if: ${{ ! contains(github.event.pull_request.labels.*.name, 'no-changelog-needed')}}
uses: andstor/file-existence-action@v3
with:
files: ${{ env.FRAGMENT_NAME }}
fail: true

Anno Knierim |Githubaknierim | PYOPP Workshop Changelog CI 70

https://github.com/aknierim

Continuous Integration (CI)
GitLab CI

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 71

https://github.com/aknierim

GitLab CI Docs: GitLab CI

Let’s take what we have written in GitHub Actions to GitLab CI:

1. Create a .gitlab-ci.yml file in the root of your repository
2. Basic setup:

Code
image: condaforge/miniforge3:24.11.3-0

variables:
MPLBACKEND: Agg
PYTEST_ADDOPTS: --color=yes

stages:
- lint
- test
- docs

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 72

https://docs.gitlab.com/ci/
https://github.com/aknierim

GitLab CI

3. Create a reusable template for all platforms:
Code
.test_template: &test_template
stage: test
before_script:
- apt-get update && apt-get install -y curl bzip2

- mamba env create -f environment.yml
- source /opt/conda/etc/profile.d/conda.sh
- conda activate [your_env_name]

- pip install pytest-cov restructuredtext-lint pytest-xdist 'coverage!=6.3.0'
- pip install -e .
- pip freeze
- pip list

script:
- pytest -vv --cov --cov-report=xml

artifacts:
paths:
- coverage.xml

reports:
coverage_report:

coverage_format: cobertura
path: coverage.xml

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 73

https://github.com/aknierim

GitLab CI Docs: Predefined Variables

4. Add jobs for each platform:
Code
test:python-3.10:
<<: *test_template
variables:
PYTHON_VERSION: "3.10"

rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event" && $CI_MERGE_REQUEST_LABELS =~

/documentation-only/↪
when: never

- when: always

test:python-3.11:
<<: *test_template
variables:
PYTHON_VERSION: "3.11"

after_script:
- curl -Os https://cli.codecov.io/latest/linux/codecov
- chmod +x codecov
- ./codecov upload-process -t $CODECOV_TOKEN

rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event" && $CI_MERGE_REQUEST_LABELS =~

/documentation-only/↪
when: never

- when: always

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 74

https://docs.gitlab.com/ci/variables/predefined_variables/
https://github.com/aknierim

Linting | GitLab CI

Code
lint:
stage: lint
image: python:3.12-slim
before_script:
- apt update -y
- apt install -y git
- git fetch --unshallow || true

- pip install restructuredtext-lint pre-commit
- pre-commit install

script:
- restructuredtext-lint README.rst
- pre-commit run --files $(git diff origin/main --name-only) || true

rules:
- when: always

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 75

https://github.com/aknierim

Test Docs Build | GitLab CI

Code
docs:
stage: test
image: python:3.12-slim
before_script:
- apt update -y
- apt install -y git build-essential pandoc graphviz ffmpeg make

- pip install -U pip towncrier setuptools
- pip install -e .[docs]

- git describe --tags
script:
- make -C docs html

rules:
- when: always

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 76

https://github.com/aknierim

Changelog | GitLab CI

Code
changelog:

stage: test
image: ubuntu:latest
rules:

- if: $CI_PIPELINE_SOURCE == "merge_request_event"
variables:

FRAGMENT_NAME: "docs/changes/${CI_MERGE_REQUEST_IID}.*.rst"
before_script:

- apt-get update && apt-get install -y git
script:

- git fetch --unshallow || true

- |
if echo "$CI_MERGE_REQUEST_LABELS" | grep -q "no-changelog-needed"; then

echo "Skipping changelog check due to 'no-changelog-needed' label"
exit 0

fi

- |
if ls $FRAGMENT_NAME 1> /dev/null 2>&1; then

echo "Changelog fragment found: $(ls $FRAGMENT_NAME)"
else

echo "Error: No changelog fragment found matching pattern: $FRAGMENT_NAME"
echo "Please add a changelog fragment for this merge request."
exit 1

fi
only:

- merge_requests

Anno Knierim |Githubaknierim | PYOPP Workshop GitLab CI 77

https://github.com/aknierim

Continuous Integration (CI)
Badges

Anno Knierim |Githubaknierim | PYOPP Workshop Badges 78

https://github.com/aknierim

Badges

→ Badges are small images that display the status of your CI or code coverage
→ Including a badge in your README is as simple as adding an image:

Code
=============================
package |ci| |codecov| |pypi|
=============================

.. |ci| image:: https://github.com/your_project/package/actions/workflows/ci.yml/badge.svg?branch=main
:target: https://github.com/your_project/package/actions/workflows/ci.yml?branch=main
:alt: Test Status

.. Badges from GitLab CI

.. |ci| image:: https://gitlab.com/your_project/package/badges/-/pipeline.svg
:target: https://gitlab.com/your_project/package/-/pipelines/latest
:alt: Test Status

.. |codecov| image:: https://codecov.io/github/your_project/package/badge.svg
:target: https://codecov.io/github/your_project/package
:alt: Code coverage

.. |pypi| image:: https://badge.fury.io/py/package.svg
:target: https://pypi.org/project/package
:alt: PyPI release

→ Great sources for creating badges (e.g., PyPI version): badge.fury.io and shields.io

Anno Knierim |Githubaknierim | PYOPP Workshop Badges 79

https://badge.fury.io/
https://shields.io
https://github.com/aknierim

Summary

Anno Knierim |Githubaknierim | PYOPP Workshop Summary 80

https://github.com/aknierim

Summary | Docs

1. Write docs so users of your package are able to understand its API
2. If possible, provide tutorials and guides on how to get started
3. Ensure that all functions and classes have docstrings

Anno Knierim |Githubaknierim | PYOPP Workshop Summary 81

https://github.com/aknierim

Summary | CI

1. CIs are great tools to test and lint your code on the remote server
2. They should be used in tandem with tests on your local machine (see also pre-commit)
3. Depending on your requirements, some work is necessary to setup everything (e.g., job runners)

Anno Knierim |Githubaknierim | PYOPP Workshop Summary 82

https://github.com/aknierim

Backup

Anno Knierim |Githubaknierim | PYOPP Workshop Backup 83

https://github.com/aknierim

Sphinx Extensions: Notable Mentions

→ nbsphinx: Built on nbconvert to include Jupyter Notebooks in the docs

→ sphinx-design: Adds components for responsive web components

→ sphinx-gallery: Creates example galleries from python scripts.

Anno Knierim |Githubaknierim | PYOPP Workshop Backup 84

https://nbsphinx.readthedocs.io
https://sphinx-design.readthedocs.io/en/latest/
https://sphinx-gallery.github.io/stable/index.html
https://github.com/aknierim

Jupyter Notebooks in Sphinx Docs: nbsphinx

→ Sometimes it is nicer to write a tutorial in a Jupyter notebook

→ nbsphinx is a Sphinx extension that will include notebooks in your docs:
$ mamba install nbsphinx
$ pip install nbsphinx

→ Add nbsphinx to your extensions list in conf.py
Code
extensions = [

...
"nbsphinx"

]

→ Create a new directory, e.g., tutorials, move the notebook (e.g., plot.ipynb) there, and add an
index.rst:
Code

Tutorials

.. toctree::
:maxdepth: 1
:glob:

plot .. name of the notebook

Anno Knierim |Githubaknierim | PYOPP Workshop Backup 85

https://nbsphinx.readthedocs.io/
https://github.com/aknierim

	Documentation
	Sphinx
	reStructuredText ()
	Docstrings
	Changelogs
	Hosting and Publishing

	Continuous Integration (CI)
	Getting Started | GitHub Actions
	Code Coverage
	Multiple Platforms
	Linting With the CI
	Building the Docs With the CI
	Changelog CI
	GitLab CI
	Badges

	Summary
	Appendix
	Backup

