## (probable) Other projects using TPSCo 65 nm

#### Jerome Baudot



- → Expected TPSCo 65 nm submissions
- → Experiments (with MAPS)
- → Specifications
- → DRD3 guess work

### TPSCo 65 nm submission plan



| 20 | 24 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 |  |
|----|----|------|------|------|------|------|------|------|--|
|----|----|------|------|------|------|------|------|------|--|

ER2



=> ALICE/ITS3 { Significant R&D in previous MLR1 & ER1 Few R&D in ER2 None in ER3 (?)





<= R&D line 'supported' by CERN EP R&D WP 1.2 under shared-budget model but yet unclear decision making

- MPR = Multi Project Run
- Maximal reticule size 32.5 x 25.5 mm<sup>2</sup> => allows
- metal stack: 7+1 layers
- Process modification: possible but under CERN control - Through DRD7.6a

- Chiplets (so far 1.5x1.5 mm2)Stitched sensors
- Large (mutli cm²) prototypes

=> Combination under CERN control Through DRD7.6.a



## Perspective on experiments (with MAPS)



Note: Mu3e not there



## Perspective on experiments (with MAPS)



Note: Mu3e not there



J. Baudot



|                                           | CBM<br>MVD                         | ALICE<br>ITS3           | Belle-II<br>VXD           | ALICE3<br>VTX               | ALICE3<br>tacker                                   | EIC<br>tracker        | LHCb<br>UT                 | FCCee<br>VTX                     | FCCee<br>tracker                 |
|-------------------------------------------|------------------------------------|-------------------------|---------------------------|-----------------------------|----------------------------------------------------|-----------------------|----------------------------|----------------------------------|----------------------------------|
| Sensor readiness                          | 2026                               | 2026                    | 2026?                     | 2030?                       | 2027                                               | 2027?                 | 2027                       | ~2040                            | ~2035                            |
| Total area (m²)                           |                                    | 10                      | 1                         | 0.15                        | 5/57                                               | Ś                     | 4.5                        | ~1                               | ~50                              |
| Techno (nm)                               | TJ 180                             | TPSCo 65                | TJ 180                    | TPSCo 65                    | TPSCo 65                                           | TPSCo 65              |                            |                                  |                                  |
| Spatial res. (µm)                         | ~5                                 | ~5                      | < 10                      | 2.5                         | 10/10                                              |                       | O(10 µm)                   | 3                                | ~10                              |
| Pitch (µm)                                | 27x29                              | 22x22                   | <40x40                    | 10x10*                      | 50x50                                              |                       | 50x50                      | 15x15*                           | 50x50                            |
| Mat. budget (%X0)                         | ~0,3                               | 0.05                    | 0.15                      | 0.1                         | 1/1                                                | 0.05-0.55             | <1                         | 0.15                             | <<1 ?                            |
| Hit rate (MHz/cm²)                        | 15-70                              | 9                       | 100<br>triggered          | 94                          | 1.7/0.06                                           | ŝ                     | <b>160</b><br>20Gb/s       | O(20)                            | <10                              |
| Time figure (ns)                          | 5.10 <sup>3</sup>                  | 5.10 <sup>3</sup>       | ~100                      | 100                         | 100/100                                            | 100 (\$)              | O(1)                       | 10 <sup>2</sup> -10 <sup>3</sup> | 10 <sup>2</sup> -10 <sup>3</sup> |
| Trigger rate (kHz)                        | -                                  | -                       | 30                        | -                           | -                                                  | 500                   | -                          | -                                | -                                |
| Power (mW/cm²)                            | <100                               | 20<br>(matrix)          | 200                       | 70                          | 20/20                                              |                       | 100-300                    | 20                               | 205                              |
| Rad.hard. (kGy)<br>(n <sub>eq</sub> /cm²) | 30 /year<br>< 10 <sup>14</sup> /y. | 3<br>3x10 <sup>12</sup> | 100<br>5x10 <sup>13</sup> | 3000<br>10x10 <sup>15</sup> | 50/2<br>10 <sup>14</sup> /5.6x<br>10 <sup>12</sup> | -<br>10 <sup>15</sup> | 2400<br>3x10 <sup>15</sup> | 20<br>5x10 <sup>11</sup>         | 20<br>5x10 <sup>11</sup>         |
| nb of layers                              |                                    |                         | 5-6                       | 3                           | 4/4                                                | 5 + 5d                | 3-4                        | 3x2                              |                                  |
| bunchX (ns)                               |                                    | 25                      | 4                         |                             |                                                    | 10                    |                            |                                  |                                  |

<sup>\*</sup> Assuming binary output

















(MHz/cm<sup>2</sup>)







<= reddish: vertex requirements

<= blueish: tracker requirements



Do we need as many sensors as experiment? matrices with tuneable front-end and process variants and switchable pixel group



Not 6 but 2-3 is wise

### Aside from the Vertex project



#### ALICE 3

• On-going brainstorming group => Convergence toward SINGLE SENSOR for vertex & middle tracker & outer tracker

#### LHCb, Belle II, FCCee

- Interested in tracker
- Some specs strongly differ

### Long term stuff

- Intrinsic amplification
- Timing (10-100 ps)



#### Chiplets in MPR2

1st sizeable sensor in MPR3?



### Large proto-sensor for tracker in MPR2

- Main common features {
   Position resolution <10 
  µm
   Low power 20-50 mW/cm²
- Differentiating features
   Time merit <25 ns or < 100 ns</li>
   Hit rate 10 to 200 MHz/cm²
   NIEL fluence 10<sup>11</sup> to 10<sup>16</sup> n<sub>eq</sub>/cm²
- Optional: time resolution 10-100 ps

#### • Realisation:

- Powerful matrix with adapted perf in periphery
- Pitch 25 to 30  $\mu$ m => 50  $\mu$ m readout (4x 25  $\mu$ m pixels)
- ALICE-3 considers 10 µm pitch
- In-pixel digitisation => time-walk correction / improved position res.
- TDC outside matrix
- Asynchronous read-out architecture => 25 ns stamping

1 or 2 such projects?

### Tower 180 nm still kicks strongly!





- MPR = Multi Project Run
- Maximal reticule size 31 x 25 mm<sup>2</sup>
- metal stack: 6 layers
- Process modification: possible but under CERN control
  - Through DRD7.6a

J. Baudot

### Expectations for DRD3 – WG1/WP1



#### Timeline

J. Baudot

21 May: ZOOM kick-off meeting
 https://indico.cern.ch/event/1414293/

 => call for projects

Reception of proto-projects

• 17-21 June: 1<sup>st</sup> DRD3 week at CERN https://indico.cern.ch/event/1402825/

WP1 convenors work with community
 => consolidated projects

September: we have a plan!

(My own extrapolations)

Projects

Research goals matching DRD3
Institutes with resources (kept within project)
Clear deliverables/milestone
Strong leadership

- TPSCo 65 nm 2-3 large projects + chiplets
- Tower 180 nm (may fade away after 4 years)
   on-going experiment-oriented sensors
   + some dedicated R&D
- LF 110 nm
   HV-CMOS
- IHP 130 nm

Less clear to me, probable mix of large projects + chiplets

# Advertisement for PIXEL 2024 in Strasbourg 18-22 Nov.















# Slides possibly useful for discussion

## DRD3 WG1 general 'plan'



|                                           |                                                   | 9                                                                                                                                                                |                                         |                                                                                            |                                                                                                                                                                                                                                 | STRASBOL                                                                                                                       |  |
|-------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| DRD3                                      | WG1 Monolithic CMOS                               | Assess technology perform                                                                                                                                        | Toward 4D-tracking for future colliders |                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                |  |
| R <sub>e</sub>                            | Timeline                                          | 2024                                                                                                                                                             | 2025                                    | 2026                                                                                       | 2027                                                                                                                                                                                                                            | ≥ 28                                                                                                                           |  |
| Se                                        | Technologies                                      |                                                                                                                                                                  | tonses (MS)                             |                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                |  |
| arch Goals                                | TPSCo (TJ) 65 nm                                  | design MPW1.1 submit MPW1.1 mid-2025 design MPW1.2                                                                                                               |                                         | evaluate MPW1.1<br>submit MPW1.2 Q4-2026                                                   | evaluate MPW1.2                                                                                                                                                                                                                 | design/submit/evaluate<br>MPW1.3-1.n                                                                                           |  |
|                                           | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | design MPW1.1<br>submit MPW1.1Q4-2024                                                                                                                            | evaluate MPW1.1<br>design MPW1.2        | submit MPW1.2 Q1-2026                                                                      | evaluate HF W 1.2                                                                                                                                                                                                               | (possibly including in common submission<br>ER designs for dedicated experiments                                               |  |
| RG1<br>Position<br>precision              | TPSCo (TJ) 65 nm                                  | electrode size/shape/p<br>12″ ER splits, thin epi<br>optimized for high char                                                                                     |                                         |                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                |  |
|                                           | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | electrode size/shape/pitch, wafer<br>8* ER or N                                                                                                                  |                                         | MS1 establish position precision versus technology, channel configuration and readout mode | MS5 handle technical solutions for Vertex Detector (ALICE-3, LHCb- 2, Belle-3, CMS/ATLAS) 1) high radiation tolerance/rate technlogies > 65 nm 2) high channel density, sitching TPSCo 65 nm MS6 handle technical solutions for |                                                                                                                                |  |
| RG2<br>Timing precision                   | TPSCo (TJ) 65 nm                                  | similar<br>optimized for fast signal coll                                                                                                                        |                                         | MS2<br>establish time precision versus<br>technology, channel                              |                                                                                                                                                                                                                                 |                                                                                                                                |  |
|                                           | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | similar<br>optimized for fast signal coll<br>including gair                                                                                                      | lection speed and high S/N              |                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                |  |
| RG3 Readout architecture common with DRD7 | TPSCo (TJ) 65 nm                                  | digital/binary, synchronous/asynchronous<br>optimised to features of RG1 and RG2 at medium rates<br>power distribution and control in large size stitched matrix |                                         | MS4 establish radiation tolerance provide guidlenies for choice of substrates              | Central Tracking (ALICE-3, EIC,<br>LHCb-2, Belle-3), Timing Layers<br>(ALICE-3, ATLAS, CMS)<br>with stitching TPSCo 65 nm                                                                                                       | merge RTs and various technology                                                                                               |  |
|                                           | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | digital/binary, synchro<br>optimised to features of RG1 and                                                                                                      |                                         | select/merge MPW1.1features<br>add new technology features                                 | MS7 handle technical solutions for low power w/o and w/ precision                                                                                                                                                               | achievements in selected technologies, extend all to stitching implement 3D integration consider finer nodes and new materials |  |
| RG4<br>Radiation<br>tolerance             | TPSCo (TJ) 65 nm                                  | process feat                                                                                                                                                     | ures in splits                          | submit configurations for Vertex<br>Detector, Central Tracking,<br>Timing Layers, HGCAL    | timing, at medium and high rates                                                                                                                                                                                                | Consider filler flodes and flew fliateflals                                                                                    |  |
|                                           | TJ/TSI 180 nm, LFoundry<br>110/150 nm, IHP 130 nm | variants of substrates (Cz, epitaxi                                                                                                                              | ial), resistivity, p-type and n-type    |                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                |  |

Jérôme Baudot - MAPS discussion with KEK - 2023/10/18