

Frédéric Morel

From brainstorming sessions with many Strasbourg colleagues

Context

- Serie of brainstorming meetings @ IPHC around TPSCo 65 nm
- Started in February and still under going
 - □ ~ one meeting per month
- C4PI engineers and MAPS user physicists from IPHC are involved
- 2 main tracks
 - □ Tracking (ALICE3 OT / LHCb UT / FCCee tracker)
 - □ Vertexing (ALICE3 VD, FCCee vertex)
- Main challenge in vertexing is to reach a ~3 μm spatial resolution

Key data

Specifications: numbers!

	CBM MVD	ALICE ITS3	Belle-II VXD	ALICE3 VTX	ALICE3 tacker	EIC tracker	LHCb UT	FCCee VTX	FCCee tracker
Sensor readiness	2026	2026	2026?	2030?	2027	2027?	2027	~2040	~2035
Total area (m²)		10	1	0.15	5/57	ś	4.5	~1	~50
Techno (nm)	TJ 180	TPSCo 65	TJ 180	TPSCo 65	TPSCo 65	TPSCo 65			
Spatial res. (µm)	~5	~5	< 10	2.5	10/10		O(10 µm)	3	~10
Pitch (µm)	27x29	22x22	<40x40	10x10*	50x50		50x50	15x15*	50x50
Mat. budget (%X0)	~0,3	0.05	0.15	0.1	1/1	0.05-0.55	<1	0.15	<<1 ?
Hit rate (MHz/cm²)	15-70	9	100 triggered	94	1.7/0.06	ś	160 20Gb/s	O(20)	<10
Time figure (ns)	5.10 ³	5.10 ³	~100	100	100/100	100 (\$)	O(1)	102-103	102-103
Trigger rate (kHz)	-	-	30	-	-	500	-	-	-
Power (mW/cm²)	<100	20 (matrix)	200	70	20/20		100-300	20	50\$
Rad.hard. (kGy) (n _{eq} /cm²)	30 /year < 10 ¹⁴ /y.	3 3x10 ¹²	100 5x10 ¹³	3000 1.5x10 ¹⁵ /year	50/2 10 ¹⁴ /5.6x 10 ¹²	- 10 ¹⁵	2400 3x10 ¹⁵	20 5x10 ¹¹	20 5x10 ¹¹
nb of layers			5-6	3	4/4	5 + 5d	3-4	3x2	
bunchX (ns)		25	4			10			

^{*} Assuming binary output

J. Baudot - other projects in TPSCo 65 nm - Vertex detector discussion meeting, 6-7 Mai 2024, DESY

How to reach ~3 μm: Binary outputs and pitch around 10 μm

- Excellent for charge collection efficiency
 - Increase radiation hardness
- Integration is difficult
 - Compact front-end
 - Compact pixel readout
- Power consumption is high
 - □ Ultra low-power front-end needed
 - Increase collecting diode gain
 - By reducing capacitance while maintaining the same collection efficiency
 - With linear avalanche (First steps in R&D)
 - Close relation with foundry needed
 - □ Efficient pixel readout needed since number of bits increase (pixel density)
- ALICE3 is looking in this direction for a unique sensor for vertexing and tracking
 - □ A study group is set up

How to reach ~3 μm: Mutli-bits outputs and pitch around 22 μm

- See Ziad's presentation
- Limited by charge sharing
- Integration is less difficult
 - More room for front-end and readout
 - Need to add multi-bit outputs and readout
- Power consumption is lower
 - More power available for time-accurate front-end
 - Efficient pixel readout needed since number of bits increase (pixel digitisation)
- Optimisation between pitch and number of bits is needed
- Direction in which C4PI moves for vertexing

Front-end consideration

- Large impact on power, detection efficiency and time resolution
- Could be based on DPTS
 - □ Wide range of biasing for power and time resolution optimisation
 - □ For 20 mW/cm2 and 22 μm pitch: ~50 nW is available for each front-end
 - No margin for 100 ns time resolution due to timewalk
 - Higher pixel-to-pixel variation with less power
- Another front-end can be developed

DOI: 10.1109/TNS.2023.3299333

DOI: 10.1016/j.nima.2023.168589

Multi-bits conversion

- ADC
 - □ Difficult to integrate for high number of bits
 - □ See Ziad's talk
- Two thresholds (1.5 bits ADC)
 - Easy to integrate
 - Duplicate discriminator branch in ALPIDE like FE
 - □ Low threshold for charge sharing / High threshold for seed pixel identification
 - □ Limited performances on spatial resolution
 - Dedicated study needed
 - Timewalk can be used to encode charge value
- Time over threshold
 - Easy to correct timewalk
 - □ Difficult for in-pixel integration in small pitch
 - Shared VCO
 - Can be done at column level if the readout is asynchronous and fast enough

Pixel Readout consideration

- Data driven readout have the best power/bandwidth ratio
 - □ Possible hit-rate (>>100 MHz/cm²) surpasses periphery bottleneck
 - ☐ This high speed could be used to make rough timestamping
- Column-drain: FEI-3, MONOPIX/OBELIX
 - □ In-pixel gray-counter + column-hitOR for more precision
 - □ High power consumption
- Priority encoder: ALPIDE, MIMOSIS, MOSS
 - □ Timestamp = frame duration (~µs)
 - □ Compact and low power
- Asynchronous bus: MALTA, MOST
 - □ Timestamp from digital pulses
- Asynchronous arbiter: (under-development) SPARC
 - □ Free timestamping of few ns

DOI:10.1088/1748-0221/13/01/C01023 DOI:10.1088/1748-0221/18/03/C03013

J. Soudier @ TREDI2023

Column or Matrix level readout

- To reduce the pitch the column readout can be done at matrix level
 - □ Sacrifice one pixel column to add a digital column selection for sub-matrix
 - Need to add simple digital logic to the matrix (buffering, selection and or logic)
 - Limited hit rate compare to column-level readout
 - \blacksquare MOSS has a pitch of ~18 µm with a yield close to the ~22 µm

Analog and Digital pixel

Analog and Digital pixel

Digital readout

Analog and Digital pixel

Digital readout

Asynchronous readout: principle

- Based on 4-phase Request / Acknowledge transactions
- Asynchronous arbiter tree builds the address
 - The first event locks the arbiter until it is processed
 - Priority is used in case of simultaneous event
- The event is sent at the matrix periphery as soon as is available
 - Free event timestamping of few ns

Asynchronous readout: some post-layout simulations

- J. Soudier poster for PISA 2024
- Time to read an event for different physical events
 - 2 different topologies
 - 2->1 and 512->1
 - □ Large number of events are read in less than 7 ns

SPARC: Quick overview

- Chiplet of the ER2 run for ALICE ITS3
- 1.5 mm x 1.5 mm
- 32 x 32 pixels
- **■** 14.4 μm x 22.8 μm
- PhD thesis of Jean Soudier
- Collaboration
 - □ IPHC, ICUBE and IRFU

Asynchronous

Periphery readout

- Crucial part of the sensor specific for each experiment
 - Data bandwidth, trigger, ...
- Large power dissipation contributor ~50%
 - Data output is large contributor
 - From few mW to few tens of mW depending of the number of links
 - Not really dependent from data
 - Buffer memories to average data throughput
 - On-chip power regulators could be needed for system integration
- Data output and buffer sizing impact on performance
 - DRD 7.2.c: Virtual electronic system prototyping with PixESL
 - SystemC framework to help to dimensioning periphery
 - Need to be updated for asynchronous pixel readout

D. Ceresa @ TWEPP 2023

Conclusion

- Many aspects need to be validated before converging on an architecture
- Need to build a team to address these challenges
- Synergies with other projects in TPSCo 65 nm are desirable
 - □ Reuse of IP blocks like bandgap, high speed link, ...

