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I. MOTIVATION

One of the biggest questions in all of science is the origin of structure in the Universe. What
created everything that we see around us? An important clue lies in the fact that the struc-
tures in the Universe aren’t distributed randomly, but displays large-scale correlations. These
correlations are a fossil record of the early universe, and by measuring them we hope to un-
cover how the cosmological perturbations formed and evolved. In this course, we will give an

introduction to these “cosmological correlations”.

1.1 Practical Motivation
In cosmology, we measure spatial correlations:
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These correlations can be traced back to the origin of the hot Big Bang;:




Where did the primordial correlations come from?

e Clue 1: The correlations span superhorizon scales.

e Clue 2: They are scale-invariant.

This suggests that the fluctuations were created before the hot Big Bang,
during a phase of approximate time-translation invariance (= inflation).

1.2 Conceptual Motivation

The study of cosmological correlators is also of conceptual interest:
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Our understanding of quantum field theory in de Sitter space (cosmology) is
still rather underdeveloped = Opportunity for you to make progress!




II. PRIMORDIAL STATISTICS

In cosmology, we only predict the statistical properties of the Universe. This means that we
can’t predict whether a galaxy will be found at a specific position x. Instead, our theories can
only tell us about the probability P(x) of finding a galaxy at x, or the conditional probability
P(x3,x1) that a second galaxy is at x, given a galaxy at x;. Using these probabilities, we can

derive spatial correlation functions, which are the main observables in cosmology.

2.1 Random Fields

Cosmological fluctuations (dp, §g,, - - -) are “random fields” = ®(¢,x).

e Correlation functions:
(P1Dy---Dy) = /@1¢2---CI>NP((I>1,--- ,PN) DDy - - DOy,

where ®; = (1, x;).

e Frgodic hypothests:
Average over statistical ensemble = spatial average over one realization.

(®(t, %)) /cpp(cp)dcp _ %/d?’x@(t,x) = 3(1).
T
ergodicity

o Symmetries:

The correlations are statistically homogeneous and isotropic:

(P(x1)P(x2)) = Ca(x1 —x2) = &a(|x1 — x2|) = &a(12),
T T

homogeneity isotropy



e Fourier space:
Reasons cosmologists like Fourier space:

1) Fourier modes “decouple” (in linear theory)
2) Correlators “diagonalize”

Fourier expansion of the field is

3
O(t,x) = / ((217:;3 X Dy (1)
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= Equal-time correlators: (®y, Py, - - - Pk, )-
= Two-point function:

(D), Dy,) = / dPa d3xy e XK Xe (B (%) D(x5))
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e Power spectrum:

(Px, Px,) = Eallx1 —x2|) = (Pu, Pa,) = (27)%0 (ks + ko) Po (K1)

where
Poll) = [ dae o),
d3k L3 B )
&(0)= | Gy Palk) = [ dink g ba(k) = [ dnk A5 (k)
T 1
variance dimensionless

power spectrum

The spectrum is scale-invariant if A3(k) is a constant.

e For Gaussian random fields, all correlators are functions of Py (k).
= “connected correlators” vanish for N > 2.
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2.2 Cosmological Perturbations

Write the metric and stress-energy tensor as

(t) + 0gu(t, %),

g/w(ta X) g/w
Ty (t) + 0T (t, %)

T, (t,x)

and then expand V*T,, = 0 and G, = 87GT), to linear order.

e The form of the perturbations depends on the choice of coordinates.
e In the comoving gauge (To; = 0), we can write the spatial metric as

9ij = a2€2<(t’x)5ij ;

where ( is the comoving curvature perturbation: CL2R(3) = 4V(.
e During inflation:

H
=26,
G 3 ¢

where d¢ is the inflaton perturbation in spatially flat gauge.
e After inflation: ¢ = const for k < (aH) (superhorizon scales).

e Each observable O is related to (x(t;) by a transfer function:

3 .
O(x,t) = / ((217:;3 Tolk;t.t;) Ge(t;) e™>.

= Fluctuations can be traced back to (i(t;).
= Physics before the hot Big Bang (¢ < ¢;) in encoded in ((x, - - - Cky)-




2.3 Observed Correlations
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The shape of the matter power spectrum depends on {€,,, o3 }.



2.4 Initial Conditions

We have learned four important facts about the initial conditions:

1. Superhorizon

The fluctuations spanned superhorizon scales at photon decoupling.
= They must have been created before the hot Big Bang.

2. Scale-invariant

The primordial fluctuations were scale invariant.
= This is a natural prediction of inflation.

3. Adiabatic

The fluctuations were adiabatic (i.e. no fluctuations in composition).
= All fluctuations are sourced by a single scalar mode:

1 J
((x) = 3 <%> , 1 = dark matter, baryons, photons
P i

4. Gaussian

The primordial fluctuations were highly Gaussian:

{¢¢Q)
(GO

= This a natural prediction for quantum fluctuations of free fields.

< 0.1%

= A lot of the physics of inflation is encoded in non-Gaussian correlations.




ITI. INFLATIONARY FLUCTUATIONS

One of the most remarkable features of inflation is that it provides a natural mechanism for
creating the primordial density fluctuations that seeded the structure in the Universe. In this

chapter, we will derive the spectrum of quantum fluctuations produced during inflation.

3.1 Basics of Inflation

Consider the action
4 Mlgl 1 v
= [doyv=g(=LR- " 0,60,6 - V().

where Mp, = (87G) /2.

e Leads to accelerated expansion (i > 0) when the potential V' (¢) is flat.
e Inflation ends when the potential steepens.
e Quantum fluctuations in the field create density perturbations.

V(o)

\_/

: ¢

inflation ¢, reheating

Varying the inflaton action with respect to the metric gives

2 65,
V=g 09"

= 0,60, — g (%gaﬁamam - W)) .




e Assuming ¢ = ¢(t) for the homogeneous background, we get
1.
po=—T" = §¢2 + V(o).
e The Friedmann equation becomes
a\’  ps 1 /1
H>=(-| = = T g )
(2) = v~ (57 + )

e Slow-roll inflation occurs when %(bZ <L V.
Ht

e During inflation, H ~ const = a(t) ~ e

Varying the inflaton action with respect to the field gives
dV
do

e Sustained slow-roll inflation occurs when qb <L 3H qb

¢+ 3Hp = —

Accelerated expansion implies a shrinking comoving Hubble radius:

d 1 1

—(aH) ' = —(a) ' = — <0.

dt( ) dt( ) (a)?

This has important consequences for the evolution of perturbations:

e Small-scale perturbations are stretched to large scales.
e Quantum fluctuations become classical perturbations.
e Perturbations are frozen on super-Hubble scales.

See diagram on the next page.
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The shrinking Hubble radius can also be written as

d, .
at) ! =

aH+aH 1

(aH)? (1-¢)

a

where the “slow-roll parameter” is

e Inflation requires € < 1.
e Scale-invariant perturbations require ¢ < 1.

9
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3.2 Free Scalars in De Sitter

The spacetime during inflation is approximately de Sitter space.

In conformal time, dn = dt/a(t), the de Sitter metric is

16 —dn? 4 dx?
(Hn)*

where —oo < 1 < 0. The primordial correlations live on the future boundary
at n, =~ 0. We consider a free, massless scalar in this background.

Classical dynamics

The action is

S = %/dnd?’x a’ {(¢,)2 - (Vq§)2]
_ % / dnd®z [(u/)2 _(Vu)? + %uﬂ ,

where u = a(n)¢.

e The classical equation of motion then is

"

2
W - Viu- =0 = uﬁ+<k2——>uk20.
a

e At early times (|kn| > 1):

up + Krue =0 = ux=
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e At late times (|kn| < 1):

2

uﬁ — ?uk =0 = ux= Akn_1+Bkr}2 )

e Most general solution:

o (1 i\ e i (1 1 etk
) = k( _k_n) N k( +k—n> Vok |

Canonical quantization

e Introduce operators u, ™ = 0,u.
e Impose commutation relations:

[a(n,x), 7(n,x)] = id(x = x') = [a(n), Tw(n)] = i(27)*0(k + k).

e Define mode expansion:

~ dgk ~ * AT 1k-x
inx) = [ G (et i)l ) e,

where
[, ] = 2r)%5(k — k) = up(n) Oyui(n) — ui(n)Oyur(n) =1i.

e Define vacuum:
ax|0) = 0.

Bunch—Davies vacuum

Choose the minimum energy state at early times:

, I B i\ e
knlin_loouk(n) = Ee —  |u(n) = (1 - k_77> Vo |
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Zero-point fluctuations

The variance of the field operator is
(|a*) = (0la(n, 0)a(n, 0)]0)

— [ [ oy O+ ) o (e + i)l ) 0

B / ((217:;3 / ((;Wk;ls uk(n)uz’(n) <0Hdk’ dik']‘m

&3k ,
= [ Gy st

—/dlo kk—3|u (n)|?

We define the (dimensionless) power spectrum as

k3

A2 (k,n) = 52

[ur(n) ]

Substituting the Bunch-Davies mode function, we find

M) = St (%) 1+ (2] 2222 (5) .

Since H = const, the spectrum is scale-invariant.
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3.3 Curvature Perturbations

Now consider the coupled inflaton-metric fluctuations.

e ADM metric:
ds® = —N?dt? + hy;(N'dt + dz')(N?dt + da’)

so that

_ (—N?+ N;N'|N; w1 (=1 N
G = N, )Y T N \WNNTT NN )

and \/—qg = N+Vh.
(3)

e Intrinsic curvature: Rij

e Extrinsic curvature:

1 /. 1
Ky =5 (hij — VN — vjNZ-) = <.
e Four-dimensional Ricci scalar:

R=R® 4 N2 (EijE,'j — Ez) + total derivative,

where E = h¥ Ei;.

e Inflaton action:
S = % / d*zvVhN [R@ + N *(EYE;; — E?)
+ N (§ = N'O6)” — hI0i90;6 — 2V |

where Mp; = 1.
e Varying the action with respect to N and N', we find

R®) — 2V — h9,;p0;¢ — N 2[EjjE7 — E? — (¢ — N'9;p)]
Vi[N"Y(E] — Ed))]

Y

0
0.

These are constraint equations for N and N'.

15



We will work in comoving gauge:

hij = a’e*X5,  N=1+a(t,x), N;=06(t,x).

Ex: Show that

R® = 20727 %[20°C + (9¢)*]
Eij = a2e2<(H —+ C)ém — 8(1N]) -+ 2N(28j)g“ — Nkﬁk@” .

Ex: Show that ' ) .
G s O0C 597
o= 0°p = H+a2H2C.

Plugging these results into the action, expanding to second order, performing
integrations by parts and using the background equations of motion, we get

SQ = /dt d3$a3€ ((:2 - %(81C)2> .

e Note that Lo 0 ¢ = ( is pure gauge in the dS limit (¢ — 0)
e Note that ¢ has no mass term = frozen superhorizon modes

In conformal time, we have

Sy = %/dnd?’x 22 [(C')Q — (@()2} . z=aV2e .

Defining u = z(, the equation of motion is

Z// Z,/
v —-Viu—-"u=0 = u’,é#—(kz——)uk:()
z

Ex: Show that

SHIS
I
3{\3|H
| e
[\
+
(V]
VRS
n
+
| —
N
N~
_ 1

where k = &' /(He).
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The equation of motion becomes
2

v:—1/4

uy, + (k2 — —/

3 1
5 )ukzO, where v=—-+¢+ =k,
n

2 2

whose Bunch—Dayvies solution is

Ex: Show that
z(n) = z(n/m.)2",

where 7, = —kL

k

The dimensionless power spectrum of ( is

kK Jur(n)]?
2 _
Ag(k) o2 22(n)
. w17

- — — (M(_ 2
53 o ga k) L (k).

e In the late-time limit, we get

) E

2
. (1)_ 2%__]{ —2v A k’ _ * kk*3721/ ‘
Jim [ (k) =~k ™ = | AK) = gy (k)
e The scalar tilt is
- dln A% )
TS e T

which was first measured by WMAP: ng, = 0.965 + 0.004.
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3.4 Gravitational Waves
Consider tensor metric perturbations:
ds® = a*(n)| — dn® + (0 + hyj)da’da’]
where 8%2-]- = h'; = 0.
e Expanding the Einstein—Hilbert action to second order gives

_ Mg,
2

2
$=g [ devmar = P [ andea (00 - O]+

e Use rotational symmetry to write k = (0,0, k) and

Uy Uy 0

Mpy
—a hU = Uy —Uyp 0

V2 0 0 0

e The action becomes
3 1\2 2 a” 2
S = — /dnd a [(U)\) — (VU)\) + a_U)\

2
A=+, %

e The equation of motion for each polarization mode is
a/l
up + (kQ——) up =0,
a

where the effective mass can be written as

a’ 12 —1/4 3
—:—2/, with r~-+4-¢.
a n 2

e Bunch—Davies mode function is the same as before.

e Superhorizon limit of the power spectrum:

2 \? k3 2 H?2
201y _ - 2 _ x 3-2v
Ay (k) =2 x (aﬂ [Pl) Jin ozl (m)|” = | — Ml%l(k/k*) :

e Observations are expressed in terms of the tensor-to-scalar ratio:

(k)
2(k.)
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——1Planck
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3.5 Primordial Non-Gaussianity

The main diagnostic of primordial non-Gaussianity is the bispectrum:

(Ciey Cio Cies) = Be (e, oo, hz) X (2m)°0(ky + ka + k) -

. 5 Be(k, k., k
e amplitude: NL = 1—8%
¢

e shape: < _—

o effect: new particles new interactions excited states
o Planck loc equil
<5 T <40 W <20
constraints: g [t /N
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In the following, we describe three methods for computing these higher-point
correlations:

e In-In Formalism
o Wavefunction Approach

» Cosmological Bootstrap
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