

Gauge anomalies from an on-shell perspective

Edoardo Alviani, Adam Falkowski

alviani@ijclab.in2p3.fr, falkowsk@ijclab.in2p3.fr

Symmetries are blueprinted in lagrangians

But it can happen that they are lost upon computing correlators

Gauge symmetry cannot be lost: we gear our theories accordingly

Symmetries are blueprinted in lagrangians

But it can happen that they are lost upon computing correlators

Gauge symmetry cannot be lost: we gear our theories accordingly

$$\sum_{n} Q_n^3 = 0$$

Symmetries are blueprinted in lagrangians

But it can happen that they are lost upon computing correlators

Gauge symmetry cannot be lost: we gear our theories accordingly

$$\sum_{n} Q_n^3 = 0$$

On-shell methods bypass gauge symmetry from the get go. What are anomaly cancellation conditions in this perspective?

arXiv:1402.7062

[Y. Huang, D. Mcgady]

Certain amplitudes expose a tension between locality and unitarity

Certain amplitudes expose a tension between locality and unitarity

Certain amplitudes expose a tension between locality and unitarity

