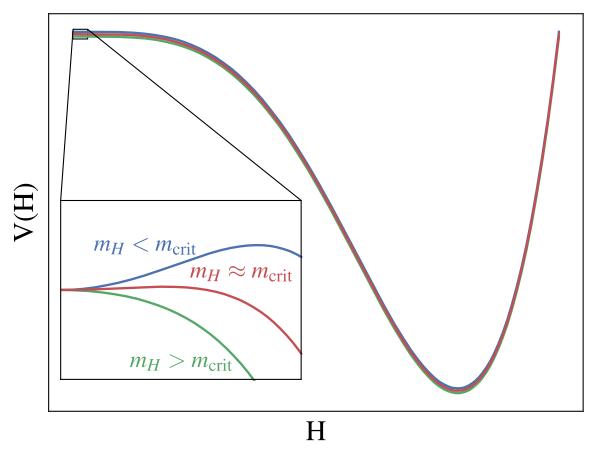


Higgs Criticality Of Beaches and Sandpiles

Maximilian Detering
Cargèse Summer School 2025
Supervised by Tevong You

The Puzzle – Higgs Hierarchy Problem


- What is the origin of the Electroweak scale?
- How can we explain a small mass scale from a large mass scale?
- Many great ideas, generally with visible new physics effects
- Paradox: small Higgs mass but no signatures of new physics

The Idea – Fine-tuning through Criticality

- Smallness of Higgs mass parameter as critical point
- Quantum phase transition through change of external parameter
- Sets metastability bound on Higgs mass

$$m_H^2 < m_{crit}^2 = -\frac{1}{2} e^{-\frac{3}{2}} \beta_{\lambda}(\mu_I) \mu_I^2$$

• **Dynamical** explanation of small Higgs mass

The Explanation – Self-organised Criticality

- Criticality can act as an attractor: self-organised criticality
- DIY experiment on the beach (suitable for theorists)
- Incarnation in particle physics: Self-organised localisation
- Background field ϕ varies and is coupled to some operator O whose expectation value changes as ϕ passes through some critical value ϕ_c $V=(\phi-\phi_c)O$
- If $\langle O
 angle$ changes across ϕ_c , stochastic evolution could localise ϕ near ϕ_c
- Other mechanisms exist too
 - → General consequence: near-critical Higgs mass

The Consequences

- Metastability bound in SM not constraining: $m_h \leq 10^{10} {
 m GeV}$
- Deformation of the Higgs potential from the SM
- Signs of new phyiscs such as
 - Vector-like fermions
 - Axions

Thank you!