Tetraquarks at Large *N*?

Javier Reig Navarro

EPFL

Cargèse Summer School 2025

Motivation: Experiment and Theory

Experimental Evidence:

- Growing list of exotic hadrons near thresholds:
 - X(3872) (Belle), T_{cc} (LHCb, 2021), X(6900) (LHCb, 2020)
- These states often appear near meson-meson thresholds (molecular states or compact objects?).

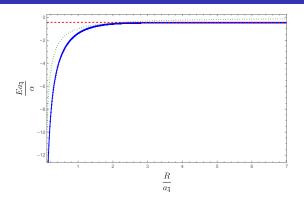
Large N QCD Predictions:

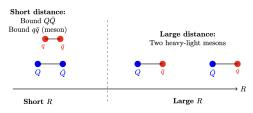
- In the large *N* limit of QCD:
 - Meson two-point functions factorize (Witten, 1979; Coleman, 1985).
- Weinberg proposed (Weinberg, 2013):
 - Subleading connected diagrams can host tetraquark poles.
 - Although suppressed by 1/N, such poles might be physical.
- Later studies (Knecht and Peris, 2013; Cohen and Lebed, 2014; Maiani et al., 2016) showed non-planar diagrams could sustain physical tetraquark resonances.

Setup: Large N and BO

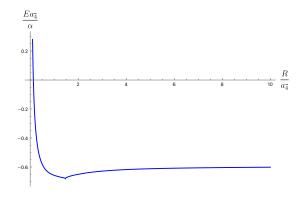
Regime of Interest:

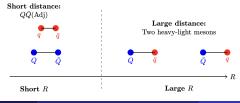
- $\bullet \ M_1 \geq M_{\bar{2}} \gg m_{\bar{4}} \gg m_3 \gg \Lambda_{\rm QCD}.$
- 't Hooft coupling: $\alpha = \frac{1}{2}\alpha_s N \ll 1$
- ullet lpha controls both gluon exchange and relativistic corrections.
- Large mass hierarchy enables use of Born-Oppenheimer (BO)
 approximation: heavy quarks treated as static sources, light quarks
 adjust adiabatically.


Leading Hamiltonian (NRQCD):


$$H = \sum_{i} \frac{\vec{p}_{i}^{2}}{2m_{i}} + \sum_{i < j} \frac{\alpha_{s}}{r_{ij}} T_{(i)}^{a} T_{(j)}^{a} + \text{small corrections}$$

- Pairwise Coulomb-like interactions from single gluon exchange
- Valid for $r_{ij} \ll \Lambda_{\rm QCD}^{-1}$




Ground State

Excited state?

Conclusion

- Experimental discoveries of exotic hadrons near meson thresholds motivate theoretical study of four-quark systems.
- Large N QCD combined with the Born-Oppenheimer approximation provides a consistent framework for heavy tetraquarks.
- The heavy quark mass hierarchy and small 't Hooft coupling $\alpha \ll 1$ justify a non-relativistic Hamiltonian with Coulomb-like interactions.
- In the ground state, at short distances the system resembles bound heavy quarkonia and light mesons; at large distances, it rearranges into two heavy-light mesons.
- A possible state with $Q\bar{Q}$ in the adjoint color configuration at short distances may exhibit a potential minimum—raising questions about its stability.