The Higgs self coupling in the presence of $e^+e^--t\bar{t}$ couplings

Lucine Tabatt

w/ Lukas Allwicher and Christophe Grojean

Why this setting

- in trilinear Higgs self coupling λ_3 one of the last things in the SM, that is not measured precisely (Currently $\mathcal{O}(100\%)$) [ATLAS, 2024; Collaboration, 2019])
- using SMEFT the main change can be described by the coefficient of $\mathcal{O}_H = (HH^\dagger)^3$

Why this setting

- looking at the process $e^+e^- \rightarrow ZH$ this operator enters at NLO [Asteriadis et al., 2025]
- $e^+e^--t\bar{t}$ couplings not restricted very well by measurements currently and are predicted by many BSM models, also enters at NLO
- Question: Would the presence of contributions to these couplings spoil the measurement of the trilinear Higgs coupling?

L. Tabatt

3

SMEFT Setting

The SMEFT operators modifying $e^+e^- - t\bar{t}$ interactions are:

$$\begin{split} & [\mathcal{O}_{lq}^{(1)}]_{1133} = (\bar{l}_1 \gamma_\mu l_1)(\bar{q}_3 \gamma^\mu q_3) \\ & [\mathcal{O}_{lq}^{(3)}]_{1133} = (\bar{l}_1 \gamma_\mu \sigma^I l_1)(\bar{q}_3 \gamma^\mu \sigma^I q_3) \\ & [\mathcal{O}_{qe}]_{3311} = (\bar{q}_3 \gamma^\mu q_3)(\bar{e}_1 \gamma_\mu e_1) \\ & [\mathcal{O}_{lu}]_{1133} = (\bar{l}_1 \gamma_\mu l_1)(\bar{u}_3 \gamma^\mu u_3) \\ & [\mathcal{O}_{eu}]_{1133} = (\bar{e}_1 \gamma_\mu e_1)(\bar{u}_3 \gamma^\mu u_3) \end{split}$$

Observables

Only taking $e^+e^- \rightarrow ZH$ problem in restricting.

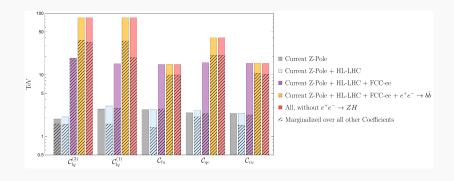
ightarrow take more observables into account (Electroweak precision, Drell-Yan)

 \rightarrow do they restrict the $e^+e^--t\bar{t}$ interactions strong enough to not spoil the measurement of \mathcal{C}_H ?

L. Tabatt

5

Observables


- ightarrow take more observables into account (Electroweak precision, Drell-Yan)
- \rightarrow do they restrict the $e^+e^--t\bar{t}$ interactions strong enough to not spoil the measurement of \mathcal{C}_H ? Not really when all of them are activated at the same time

But the used operators automatically also generate an $e^+e^--b\bar{b}$ interaction! \to add the observable $e^+e^-\to b\bar{b}$

L. Tabatt

6

Fitting the coefficients to the data/data projections

About Me

- · Interests: BSM Pheno, Axion, Extra-Dim Axion, Generalized symmetries, Higher Groups
- · Supervisor: Christophe Grojean

· Outside Physics: Gymnastics 20ther Sports Cooking & Baking (and Eating)