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Time-Dependent Observables

Consider a time-dependent observable O(¢): radius, azimuthal angle, etc...

Clearly, O(t) is very different between the unbound (£ > 1) and bound (E' < ) cases.
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Here we... MK, Shen, Telem 25

|s there a way to compute and analytically continue (O(¢) between the unbound and bound regimes?
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This is a crucial question for the computation of (bound) black hole inspirals with (unbound) scattering

amplitude methods. We answer it in the probe limit.



Laplace Observables MK, Shen, Telem 25

We found a representation for any ©(¢) which is automatically analytically continued between unbound

and bound motion: its Laplace transform

N 0 o0
laplace: O (sp) = =~ / dt O(t) e—srt
21 J o I, - real value in
I, +ico b convergence strip of @(SL)
Inverse Laplace: = —iP / )esLQ rtdsy, P - Principal value
27[ T« ,r,/
QP = iQ = —— is the radial fundamental frequency with T} = 2/ A dr’
TI" Tmin U”'(Irl)

QP is positive real for bound. €. is positive real for unbound



Laplace Observables MK, Shen, Telem 25

In the bound regime, the Laplace transform becomes a Fourier transform

~ n b 00 '
Fourier: O (sp) =i0(sy) = 2_7:/ dt O(t) eisr 0t 2
Inverse Fourier: O(t) = ”P/ ds;, O (sp) e st :

The inverse Fourier can be computed by contour integration, picking up the poles

of @(SL) on the real line and becoming a Fourier series

O(t) = 2w sign(t) Z Ress, [@ (sr) e—z‘sLQﬁt]

Computing @(SL) as a complex function < Solving the full dynamics both in bound and unbound




The Quantum Spectral Method MK, Telem 23
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Master equation: O(sp)= Y (-1)*1im (j,¢,m/|O|j,,£,m)
h—0
AL, Am / \
Classical “Ouantum” Matrix element between Klein-Gordon (KG) “wavefunctions”
Laplace observable Klein-Gordon “wavefunctions” — solutions to the KG equation
with the potential

In the point-particle (classical) limit 2 — 0, the ‘quantum numbers” j,, £, m go to infinity while their products
with f are the finite, dimensionful action variables for point-particle motion:

(jmea m) =kt (']’raL? Lz) (j;,,fl,m’) = (Jr, £, m) — (Ajr, AL, Am) Ajr = —s1 — f<PAE

fo= LN =K



Sample OSM Calculation: Azimuthal Angle
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Can see periastron advance

Same analytic Laplace observable: bound - unbound universality



