Bound-Unbound Universality

Majed Khalaf (Hebrew University)

Cargèse BSM Summer School

July 24, 2025

gr-qc 2503.23317 (Submitted to JHEP)

w/ C-H Shen (NTU) and O. Telem (HUJI)

JHEP 09 (2024) 053 (gr-qc 2310.03798)

w/ O. Telem (HUJI)

Time-Dependent Observables

Consider a time-dependent observable $\mathcal{O}(t)$: radius, azimuthal angle, etc...

Clearly, $\mathcal{O}(t)$ is very different between the unbound $(E > \mu)$ and bound $(E < \mu)$ cases.

Here we...

Is there a way to compute and **analytically continue** $\mathcal{O}(t)$ between the unbound and bound regimes?

This is a crucial question for the computation of (bound) black hole inspirals with (unbound) scattering amplitude methods. We answer it in the **probe limit**.

Laplace Observables

We found a representation for any $\mathcal{O}(t)$ which is automatically analytically continued between unbound and bound motion: its **Laplace transform**

Laplace:
$$\hat{\mathcal{O}}\left(s_L
ight) = rac{\Omega_r}{2\pi} \int_{-\infty}^{\infty} dt \; \mathcal{O}(t) \, e^{-s_L\Omega_r t}$$

Inverse Laplace: $\mathcal{O}(t) = -i\mathcal{P}\int_{\Gamma_r - i\infty}^{\Gamma_r + i\infty} \hat{\mathcal{O}}\left(s_L\right) e^{s_L\Omega_r t} ds_L$

 Γ_r - real value in convergence strip of $\hat{\mathcal{O}}(s_L)$ \mathcal{P} — Principal value

$$\Omega_r^b = i\Omega_r = rac{2\pi}{T_r}$$
 is the radial fundamental frequency with $T_r = 2\int_{r_{min}}^{r_*} rac{\gamma(r')\mu}{\sqrt{U_r(r')}}\,dr'$

 Ω_r^b is positive real for bound. Ω_r is positive real for unbound

Laplace Observables

In the bound regime, the Laplace transform becomes a Fourier transform

$$\widetilde{\mathcal{O}}\left(s_{L}
ight)=i\hat{\mathcal{O}}\left(s_{L}
ight)=rac{\Omega_{r}^{b}}{2\pi}\int_{-\infty}^{\infty}dt\;\mathcal{O}(t)\,e^{is_{L}\Omega_{r}^{b}t}$$

$$\mathcal{O}(t) = \mathcal{P} \int_{-\infty}^{\infty} ds_L \,\, \widetilde{\mathcal{O}} \left(s_L
ight) \, e^{-i s_L \Omega_r^b t}$$

The inverse Fourier can be computed by contour integration, picking up the poles of $\hat{\mathcal{O}}(s_L)$ on the real line and becoming a **Fourier series**

$$\mathcal{O}(t) = 2\pi \operatorname{sign}(t) \sum \operatorname{Res}_{s_L} \left[\hat{\mathcal{O}}(s_L) e^{-is_L \Omega_r^b t} \right]$$

Computing $\widehat{\mathcal{O}}(s_L)$ as a complex function \leftrightarrow Solving the full dynamics both in bound and unbound

The Quantum Spectral Method

In the point-particle (classical) limit $\hbar \to 0$, the "quantum numbers" j_r , ℓ , m go to infinity while their products with \hbar are the finite, dimensionful **action variables** for point-particle motion:

$$(j_r, \ell, m) = \hbar^{-1} (J_r, L, L_z) \quad (j'_r, \ell', m') = (j_r, \ell, m) - (\Delta j_r, \Delta \ell, \Delta m) \qquad \Delta j_r = -s_L - f_\varphi \Delta \ell$$
$$f_\varphi = L/\sqrt{L^2 - K^2}$$

Sample QSM Calculation: Azimuthal Angle

Same analytic Laplace observable: bound - unbound universality