ITI. INFLATIONARY FLUCTUATIONS

One of the most remarkable features of inflation is that it provides a natural mechanism for
creating the primordial density fluctuations that seeded the structure in the Universe. In this

chapter, we will derive the spectrum of quantum fluctuations produced during inflation.

3.1 Basics of Inflation

Consider the action

M? 1
5= [atav=g (Mir—Jpa,00.0-v(0)),
where Mp = (87G)~1/2.

e Leads to accelerated expansion (4 > 0) when the potential V' (¢) is flat.
e Inflation ends when the potential steepens.
e Quantum fluctuations in the field create density perturbations.

V(¢)

\_/

: ¢

inflation ¢, reheating

e The homogeneous background satisfies

_ o L (14 _ .
0;5=0 = H e 2qf> +V(p)), H=ala,
0,9 =0 = $+3H¢:—%.



e Slow-roll inflation occurs when %g/)z < V.

e Slow-roll inflation lasts when ¢ < 3H¢.

e During inflation, H =~ const = a(t) ~ e,

Accelerated expansion implies a shrinking comoving Hubble radius:

d, ., d,. ., i
) = @) = s <0,

This has important consequences for the evolution of perturbations:

Scales
& (aH)
N
Superhorizon ﬁ: :
A N 7 = A \c
C N z 5:5
Quantum Density :, >
Fluctuations Fluctuations ‘l CMB Anisotropies
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’ : ]
Inflation Hot Big Bang ﬁ )
. > Time
The shrinking Hubble radius can also be written as
d . aH+ad 1
CaH) = =TS = (1),
dt (aH) a

where the “slow-roll parameter” is

e Inflation requires € < 1.
e Scale-invariant perturbations require ¢ < 1.
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3.2 Free Scalars in De Sitter

The spacetime during inflation is approximately de Sitter space.

In conformal time, dn = dt/a(t), the de Sitter metric is

1s? — —d772 + dx?2
(Hn)*

where —oo < 7 < 0. The primordial correlations live on the future boundary
at n, = 0. We consider a free, massless scalar in this background.

Classical dynamics

The action is

53 [ e[ - (Voy]

2
1 CI,”
= §/dnd3x [(u/)2 — (Vu)? + —uﬂ :
a

where u = a(n)¢.

e The classical equation of motion then is

"

2
V- Viu—-Tu=0 = |4 (K== ug =01 .
a k n?
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o At early times (|kn| > 1):

1 1
PR S—

After quantization, the minimum energy solution has By = 0.

e At late times (|kn| < 1):

uﬂ+k2uk:() — ux = Ag

2 .,
uﬁ — ?uk =0 = ux= C’kn_l + Dk)]2 .

e Bunch-Davies solution:

What is Ay?

Canonical quantization

e Introduce operators u, ™ = 0,u.
e Impose commutation relations:

[a(n,x), 7(n,x)] = ihd(x —x) = [i(n), Tw(n)] = ik (27)*5(k + k).

e Define mode expansion:

. d3k A * A~ 1k-x
w(n,x) = / (27) (’uk(7l)(lk + “k(”)“'k) e,

where [ay, af,] = (27)%6(k — K/).

e Define vacuum:
ax|0) = 0.
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Zero-point fluctuations

The variance of the field operator is
(|a*) = (0la(n, 0)a(n, 0)]0)

— [ [ oy O+ ) o (e + i)l ) 0

B / ((217:;3 / ((;Wk;/s () u (n) <0Hdk’ dik']‘m

&3k ,
= [ Gy st

—/dlo kk—3|u (n)|?

We define the (dimensionless) power spectrum as
3

A% (k,n) = 52

|Uk(77)\2-

Substituting the Bunch—Davies mode function, we find

it = B (Y ) s (2

Since H = const, the spectrum is scale-invariant.
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3.3 Curvature Perturbations
Now consider the coupled inflaton-metric fluctuations.
e ADM metric:
ds® = —N?dt? + hy;(N'dt + d2')(N?dt + da?) .
e Comoving gauge (6¢ = 0):
hij = a262C(t’X>5ij, N=1+a(t,x), N;=05(tx).
e Einstein equations lead to

s, O,
oz—H, 0°p = H+a2H2C'

e Plugging these results into the action, expanding to second order, performing

integrations by parts and using the background equations of motion, we get

L, 1 50°
Sy = /dtd?’x a’e <C2 — ;(@'C)Z) y €= j\;lngQ '

e Note that Lo ¢ = ( is pure gauge in the dS limit (¢ — 0)
e Note that ¢ has no mass term = frozen superhorizon modes

In conformal time, we have

Sy = %/dnd?’aﬁ 22 {(C’)2 — (82()2} . z2=aV2e.

Defining u = 2(, the equation of motion is

1 i
W -V - =0 = u%—l—(kQ—Z—)uk:O

Ex: Show that

where k = &'/(He).
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The equation of motion becomes

2_1/4 1
uy, + (kQ—%) ur =0, where VE§—|—€+§I<J,
whose Bunch—Davies solution is
i
ur(n) = %\/—77 HY (—kn) | .
Ex: Show that
-
2(n) = z(n/n:)>",
where 7, = —k;;l.
The dimensionless power spectrum of ( is
k3 2
2m% 2%(n)
o1 T
_ —k* -1 "/ H(l) —k 2.
e In the late-time limit, we get
2 1 H?
lim [HM(—kn)|? =~ =(—kn)~? ALE) = ———= (k/k)>].
Jim [kt 2 (k) =) = o (k)

e The scalar tilt is

ne— 1=

dlnAg
dInk

—2&,

_/f*,

which was first measured by WMAP: ng = 0.965 + 0.004.
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3.4 Gravitational Waves
Consider tensor metric perturbations:
ds* = a*(n)[ — dn* + (6;j + hij)da'da’]
where 0'h;; = h'; = 0.
e Expanding the Einstein—Hilbert action to second order gives

_ M,
2

2
S /d4x\/—gR = %/dnd?’xag [(hij)? = (Vhij)®] +---

e Use rotational symmetry to write k = (0,0, k) and

M, Uy Ux 0
—ahij = | ux —us 0

V2 0 0 0

e The action becomes

1 CL”
S = 3 Z /dnd?’x [(u&)2 — (Vuy)? + Eui :

A=+, X

e The equation of motion for each polarization mode is

a//
UZ"‘ <k2——>Uk:0,
a

where the effective mass can be written as

a v -—1/4 3
—:—2/, with v=~—-+¢.
a Ui 2

e Bunch-Davies mode function is the same as before.

e Superhorizon limit of the power spectrum:

2 \? k3 2 H?
201\ _ . RT 2 _ | & Hy 3—2u
80 =2 ¢ () Jim sl =| S (/)2

e Observations are expressed in terms of the tensor-to-scalar ratio:

(k)
2(k.)
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—1Planck
m2 ¢2 = P+BK
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3.5 Primordial Non-Gaussianity

The main diagnostic of primordial non-Gaussianity is the bispectrum:

(Ciey GGy = (2m)°5 (k1 + ko + k3) Be (ki ko, k) -

| 5 Be(k. k. k
[ amphtUde: NL = TSC.LTIQ))
¢

e shape: < .

o effect: new particles new interactions excited states
* Planck loc equil
. <5 - 40 flat| 90
constraints: AN [ ANE
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equilateral folded
i i /': squeezed

671/,'1/

In the following, we describe three methods for computing these higher-point
correlations:

e In-In Formalism
e Wavefunction Approach

e Cosmological Bootstrap
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IV. IN-IN FORMALISM

In particle physics, the main observables are scattering amplitudes which predict the transition
probabilities between some initial (“in”) and final (“out”) states (defined in terms free particles
far in the past and future). In cosmology, however, there are no well-defined asymptotic
regions where particles behave freely, which prevents a clean definition of scattering amplitudes.
Instead, the primary observables are correlation functions, defined as expectation values at a

W "

fixed time in a quantum state evolved from an initial “in” state.

4.1 Master Formula

We are interested in computing
(O(t)) = (QO(1)|),

where |(2) the vacuum of the interacting theory.

In the interaction picture, we get

(O(t)) = (0| Te oo W Fine O, (1) T I 4/ Hin

0)},

where Hjy is the interaction Hamiltonian and the free vacuum |0) is selected
by the “ie prescription”: t — t(1 — i¢)

In perturbation theory, we find

o) =2m ([ at 0160 w0+

—0oQ

In the notes, we apply this to many examples.
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4.2 Slow-Roll Inflation

The cubic action for ¢ is
5= [ dndiaa[(¢ - 007,
5= [ dnds {a%?[«c’)%c(&c) ~20007¢| — 50y (en c)}

Exercise: Show that

<Ck1§k2€k3> 32182 klk'gkg (Z k k2 Z kaQ) ’% o 8) Z k?

1>]

The amplitude of the bispectrum is

_ 5 Be(k,k,k)

5
_ 0 Bk m ) 1.
NIRRT AN )<

It is also interesting to take the squeezed limit, ks < k1 ~ ko, of the bispectrum:

lim (G, G, G >’—LH4 2k3 + 5 — k) + (5 — )2k}
b0 KRN T 30 2 1613 2k ! !

(2 + k) H? 1 H? 1
_= /Q _— PR
4e k3 ) \ de k3

= (25 + Ii) Pc(kﬁpc(kg)
= | (1= ng) P (k) Pe(ks) |,

where F;(k) is the power spectrum. This result (called “single-field consistency
relation”) applies to all models of single-field inflation, not just slow-roll models.
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4.3 Cosmological Collider

New particles during inflation can lead to a violation of the single-field consis-
tency relation:

© © © d)(f)

late

early

Opy...pg

Consider

1 1 1 0,,0)?
£ = 5007 ~ V() ~ (0,00 — Lot + T

The associated bispectrum is hard to compute (see “cosmological bootstrap”).
In the squeezed limit, we find

. (G CioCies) e M _aom (ks\*? . [M ks
] 15K25K3 ~ Pl M/ 3 | "3
Icglin() P<</€1)P§(]€3) 8m A2 ¢ ]€1 i H ©8 kl
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