
V. WAVEFUNCTION APPROACH

Cosmological correlations can also be computed by means of the so-called “wavefunction of the

universe.” The wavefunction is a slightly more primitive object than correlators themselves—

the relation between them is roughly the same as that between the S-matrix and scattering

cross-sections. As a result, the wavefunction is somewhat simpler than correlators in certain

ways that we will see.

5.1 Wavefunction of the Universe

⌘⇤ = 0  [�]
�(x) ⌘ �(⌘⇤,x) : boundary field

�(⌘,x) : bulk field

time

The “wavefunction of the universe” is  [�] ⌘ h�(x)|⌦i.
It defines boundary correlators

h�(x1) · · ·�(xN)i =
Z

D��(x1) · · ·�(xN) | [�]|2 .

The perturbative expansion of the wavefunction (in momentum space) is

 [�] = exp

 
�

1X

N=2

1

N !

Z
d3k1 · · · d3kN  N(k)�k1 · · ·�kN

!
,

where the “wavefunction coe�cients” are

 N(k) = (2⇡)3�(k1 + · · · + kN) N(k)

= (2⇡)3�(k1 + · · · + kN) hOk1 · · ·OkN i0 .

"
dual operators: � ! O, �ij ! Tij
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The relation between correlators and wavefunction coe�cients is

h��i0 =
1

2RehOOi0 ,

h���i0 =
2RehOOOi0

Q3
a=1 2RehOaOai0

,

h����i0 =
hOOOOi0

(hOOi4
+

hOOXi3

hXXihOOi4
.

The wavefunction has the following path integral representation:

 [�] =

Z

�(⌘⇤)=�

�(�1�)=0

D� eiS[�] ⇡ eiS[�cl] ,

"
tree level

where �1� ⌘ �1(1 � i✏). [Note: Opposite i✏ to canonical quantization!]

To find the wavefunction, we therefore need to find the classical solution for
the bulk field with the correct boundary conditions.

5.2 Warmup in Quantum Mechanics

Consider our old friend the simple harmonic oscillator:

S[�] =

Z
dt

✓
1

2
�̇2 � 1

2
!2�2

◆
.

• The classical solution (with the correct boundary conditions) is

�cl(t) = �ei!t .

• The on-shell action becomes

S[�cl] =

Z
t⇤

ti

dt


1

2
@t(�̇cl�cl) � 1

2
�cl (�̈cl + !2�cl)| {z }

= 0

�

=
1

2
�̇cl�cl

���
t=t⇤

=
i!

2
�2 .
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• The wavefunction then is

 [�] ⇡ exp(iS[�cl]) = exp
⇣
�!
2
�2
⌘
.

• The quantum variance of the oscillator therefore is

h�2i = 1

2!
.

• In QFT, the same result applies for each Fourier mode:

h�k��ki0 =
1

2!k

,

where !k =
p
k2 +m2.

To make this more interesting, consider a time-dependent oscillator:

S[�] =

Z
dt

✓
1

2
A(t)�̇2 � 1

2
B(t)�2

◆
.

• The classical solution is

�cl = �K(t) , with
K(0) = 1
K(�1) ⇠ ei!t

• The on-shell action becomes

S[�cl] =

Z
t⇤

ti

dt


1

2
@t(A�̇cl�cl) � 1

2
�cl (@t(A�̇cl) + B�cl)| {z }

= 0

�

=
1

2
A�̇cl�cl

���
t=t⇤

=
1

2
A�2@t logK

���
t=t⇤

.

• The wavefunction then is

 [�] ⇡ exp(iS[�cl]) = exp

✓
i

2
(A@t logK)

���
⇤
�2

◆
,

which implies

| [�]|2 = exp
�
�Im(A@t logK)

��
⇤�

2
�

=) h�2i = 1

2 Im(A@t logK)
��
⇤

.

24



5.3 Free Fields in de Sitter

Consider a massless field in de Sitter:

S =

Z
d⌘d3x a2(⌘)

⇥
(�0)2 � (r�)2

⇤

=
1

2

Z
d⌘

d3k

(2⇡)3


1

(H⌘)2
�0

k�
0
�k � k2

(H⌘)2
�k��k

�
,

which is the same as the time-dependent oscillator.

• The classical solution is

�cl = �K(⌘) , with
K(0) = 1
K(�1) ⇠ eik⌘

The function K(⌘) is the bulk-to-boundary propagator.

• For a massless field, we have

K(⌘) = (1 � ik⌘)eik⌘ ,

logK(⌘) = log(1 � ik⌘) + ik⌘ ,

and hence

Im(A@⌘ logK)
��
⌘=⌘⇤

=
1

(H⌘⇤)2
Im

✓
�ik

1 � ik⌘⇤
+ ik

◆

=
1

(H⌘⇤)2
Im

✓
k2⌘⇤ + ik3⌘2

⇤
1 + k2⌘2

⇤

◆
⌘⇤!0���! k3

H2
,

• The two-point function then is

h�k��ki0 =
H2

2k3
.

The result for a massive field is derived in the lecture notes.
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5.4 Anharmonic Oscillator

Consider the following anharmonic oscillator:

S[�] =

Z
dt

✓
1

2
�̇2 � 1

2
!2�2 � 1

3
��3

◆
.

• The classical equation of motion is

�̈cl + !2�cl = ���2
cl .

• A formal solution is

�cl(t) = �K(t) + i

Z
dt0 G(t, t0)

�
���2

cl(t
0)
�
,

where

K(t) = ei!t ,

G(t, t0) =
1

2!

⇣
e�i!(t�t

0)✓(t � t0) + ei!(t�t
0)✓(t0 � t) � ei!(t+t

0)
⌘
.

• Computing the on-shell action is now a bit more subtle.

As before, we first write

S[�] =

Z t⇤

ti

dt


1

2
@t(��̇) � 1

2
�(�̈+ !2�) � �

3
�3

�

=
1

2
��̇

����
t=t⇤

+

Z
dt


� 1

2
�(�̈+ !2�) � �

3
�3

�
.

Since

lim
t!0

G(t, t0) = 0 ,

lim
t!0

@tG(t, t0) = �iei!t
0 6= 0 ,

the boundary term is

1

2
�cl�̇cl

����
t=t⇤

=
1

2
�

✓
i!�� i�

Z
dt0
�

� iei!t
0�
�2

cl(t
0)

◆

=
i!

2
�2 � �

2
�

Z
dt0 ei!t

0
�2

cl(t
0) .
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The action then becomes

S[�cl] =
i!

2
�2 � �

2
�

Z
dt ei!t�2

cl

+

Z
dt


� 1

2

✓
�ei!t � i�

Z
dt0 G(t, t0)�2

cl(t
0)

◆⇣
� ��2

cl(t)
⌘

� �

3
�3

cl

�
.

The terms linear in � cancel.

• The final on-shell action is

S[�cl] =
i!

2
�2 � �

3

Z
dt�3

cl(t) � i�2

2

Z
dt dt0 G(t, t0)�2

cl(t
0)�2

cl(t) .

• We then write the classical solution as �cl(t) =
P
�n�(n)(t), where

�(0)(t) = �ei!t ,

�(1)(t) = i

Z
dt0 G(t, t0)

⇣
�(�(0)(t0))2

⌘

= i

Z
dt0 G(t, t0)

⇣
��2e2i!t

0
⌘
=

�2

3!2

�
e2i!t � ei!t

�
.

• With this, the wavefunction becomes

 [�] ⇡ eiS[�cl] = exp

✓
�!
2
�2� �

9!
�3 +

�2

72!3
�4 + · · ·

◆
.

From this, we can compute h�3i, h�4i, etc.
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5.5 Wavefunction in Field Theory

Back to field theory:

S[�] =

Z
d4x

p
�g

✓
�1

2
gµ⌫@µ�@⌫�� 1

2
m2�2 � 1

3
��3

◆
.

The analysis is similar to that of the anharmonic oscillator () lecture notes).

In the interest of time, we jump directly to Feynman rules for WF coe�cients:

• bulk-to-boundary propagator K for every external line
• bulk-to-bulk propagator G for every internal line
• integrate each vertex over time.

i�

Z
dt a3(t)

G(kI ; t, t
0)

Kk(t)

Given a mode function fk(t), the bulk-to-boundary and bulk-to-bulk propaga-
tors are

Kk(t) =
fk(t)

fk(t⇤)
,

G(k; t, t0) = f ⇤
k
(t)fk(t

0) ✓(t � t0) + f ⇤
k
(t0)fk(t) ✓(t

0 � t)| {z }
= GF (k; t, t

0)

� f ⇤
k
(t⇤)

fk(t⇤)
fk(t)fk(t

0) .
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5.6 Examples in Flat Space

The wavefunction is an interesting object even in flat space:

S =

Z
d4x

✓
�1

2
(@�)2 � �

3!
�3

◆
.

• Evaluate correlators at t⇤ ⌘ 0.
• The flat-space mode function is

fk(t) =
1p
2k

eikt .

• Using this, the relevant propagators are

Kk(t) = eikt ,

G(k; t, t0) =
1

2k

⇣
e�ik(t�t

0) ✓(t � t0) + eik(t�t
0) ✓(t0 � t) � eik(t+t

0)
⌘
.

We will compute the simplest tree-level correlators in this theory.

• The three-point wavefunction coe�cient in �3 theory is

hO1O2O3i0 ⌘

= i�

Z 0

�1
dt ei(k1+k2+k3)t

=
�

k1 + k2 + k3
.

• This is easily generalized to N -point wavefunction coe�cients:

hO1O2 . . . QNi0 = i�

Z 0

�1
dt ei(k1+k2+···+kN )t

=
�

k1 + k2 + · · · + kN
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• The four-point wavefunction coe�cient in �3 theory is

hO1O2O3O4i0 ⌘

= ��2

Z 0

�1
dtdt0 eik12t G(kI ; t, t

0) eik34t
0

= � �2

2kI

Z 0

�1
dtdt0 eik12t

⇣
e�ikI(t�t

0) ✓(t � t0) + eikI(t�t
0) ✓(t0 � t) � eikI(t+t

0)
⌘
eik34t

0

= � �2

2kI

Z 0

�1
dt

Z
t

�1
dt0 ei(k12�kI)tei(k34+kI)t0

� �2

2kI

Z 0

�1
dt0
Z

t
0

�1
dt ei(k12+kI)tei(k34�kI)t0

+
�2

2kI

Z 0

�1
dt

Z 0

�1
dt0 ei(k12+kI)tei(k34+kI)t0

=
�2

2kI


1

(k12 + k34)(k34 + kI)
+

1

(k12 + k34)(k12 + kI)
� 1

(k12 + kI)(k34 + kI)

�

=
�2

(k12 + k34)(k12 + kI)(k34 + kI)
.

The answer has an interesting singularity structure. More about this later.

Exercise: Show that

hO1O2O3O4O5i0 ⌘

=
�3

EELEMER


1

k123 + k0
I

+
1

k345 + kI

�
.
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5.7 Examples in De Sitter

In general, correlators in de Sitter cannot be computed analytically (some
exceptions are presented in the lecture notes).

5.8 Cosmological Collider Physics

Consider the four-point function of a conformally coupled scalar (with
m2 = 2H2) mediated by the exchange of a massive scalar:

F ⌘ hO1O2O3O4i ⌘

= ��2

Z
d⌘

⌘2

Z
d⌘0

⌘02 eik12⌘eik34⌘
0
G(kI ; ⌘, ⌘

0) .

"
products of Hankel functions

The time integrals cannot be performed analytically.

Is there a way to obtain an analytic understanding of this (and other) correla-
tors in de Sitter space?
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