# Bubble Wall Velocity in Cosmological FOPT

Modeling the evolutions of bubbles





#### Why Cosmological First Order Phase Transitions (FOPT)?



**Enrico Perboni** 

## All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{\rm w}$

Enrico Perboni 22.07.2025

#### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{ m w}$

The Klein-Gordon equation for the background field

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{\mathrm{w}}$

The Klein-Gordon equation for the background field

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

Solving the Boltzmann Equations for particles in the plasma

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathcal{C}_{i} = 0$$

### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{\mathrm{w}}$

The Klein-Gordon equation for the background field

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

Solving the Boltzmann Equations for particles in the plasma

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathcal{C}_{i} = 0$$



#### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{ m w}$

The Klein-Gordon equation for the background field

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

Solving the Boltzmann Equations for particles in the plasma

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathcal{C}_{i} = 0$$



## All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{\rm w}$

Enrico Perboni 22.07.2025

### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{\rm w}$

#### Approach using hydrodynamics

Hydrodynamics tells us that macroscopic quantities change across a phase transition front to satisfy  $\partial_\mu T^{\mu\nu}=0$ 

Enrico Perboni 22.07.2025

### All these processes depends crucially on the velocity of the expanding bubble wall, $\xi_{ m w}$

#### Approach using hydrodynamics

Hydrodynamics tells us that macroscopic quantities change across a phase transition front to satisfy  $\partial_\mu T^{\mu\nu}=0$ 

$$\gamma_{+}^{2}v_{+}^{2}\omega_{+} - \mathcal{F}_{+} = \gamma_{-}^{2}v_{-}^{2}\omega_{-} - \mathcal{F}_{-}$$

$$\gamma_{+}^{2}v_{+}\omega_{+} = \gamma_{-}^{2}v_{-}\omega_{-}$$



#### Thank you for your attention!