Larissa Kiriliuk

Asymptotic Freedom for Holographic Energy Correlators

Larissa Kiriliuk, Ameen Ismail & Csaba Csáki

Arxiv 2507.xxxxx

Cargèse 2025

Motivation

$$ig\langle \mathcal{E}(ec{n_1})\mathcal{E}(ec{n_2})ig
angle$$

Holographic EEC

Inserting EEC

shockwave prescription

for a scalar state in the bulk with $~q^{\mu}=(q,ec{0})$

$$\langle \mathcal{E}(0)\mathcal{E}(x_\perp)
angle \sim \left(1+(x_\perp)^2
ight)^3 f(x_\perp,z=1)$$

once you have shockwave, correlator is determined

Towards confinement

- "simplest" confinement model: add a scale in CFT
- equivalent to adding an IR brane in AdS

Holographic EEC: IR brane at z=zIR

Towards confinement: running

- can we include running/ asymptotic freedom?
- example of braneless like approach as in Reece M & C.Csáki (2006)

 \longrightarrow singularity at $z=z_0$

near UV, expect similar AdS metric up to Log corrections

Results

Results

2 different regimes: scaling near small separations and smooth decay for larger separations

Outlook

- The implementation of running reproduces good qualitative behavior of collinear limit (power law scaling)
- Model still raw, need to cook it more: stringy corrections or jets would be interesting next steps
- In order to see collinear limit one may need to include fluctuations in the metric