

Insufficient Fermion (P)reheating in a Quartic Inflaton Potential

Nabeen Bhusal

Based on hep-ph/250x.xxxxx in collaboration with E. Chavez*, M.A.G. Garcia*, A. Menkara* and M. Pierre*

CARGESE SUMMER SCHOOL
BSM ODYSSEY: TWISTS AND TURNS IN PARTICLE THEORY

Consider a potential with quartic minimum, i.e set k=4

$$V(\phi) = \lambda M_P^4 \left(\sqrt{6} \tanh \left(\frac{\phi}{\sqrt{6} M_P} \right) \right)^k$$

A Lagrangian with

$$\mathcal{L}_{\mathrm{int}} = y\phi\bar{\psi}\psi$$

Goals?

- Determine the range of couplings, y, to achieve reheating
- Perform a full non-perturbative analysis including backrection and fragmentation effects
- Compare with Perturbative expectation

- Perturbative: particle production (wavelengths < Hubble scale) from classical oscillating inflaton (impossible to account for Pauli-Blocking correctly)
- Non-perturbative: gravitational production of fermion quanta out of the background, accounting for Pauli Blocking and all wavelengths

What we found?

 Fermions have to be treated non-perturbatively from couplings as small as 0.0000001 (seems perturbative)

Fig 1. Perturbative expectation (red) and non-perturbative (blue) fermion energy density

 Pauli Blocking in the phase space distribution (PSD) is reached at these low couplings in the IR

Fig 2. PSD of fermion (occupation number n_p) vs. momentum modes

What we found?

- Reheating to purely fermions in quartic inflaton potentials seems to be (I will wait for the paper to say it is) impossible:
 - → For small coulings (perturbative regime), you do not produce enough fermions to reheat (BBN Bound)
 - → For moderate couplings, post-fragmentation perturbative decays of inflaton fluctuations is kinematically suppressed resulting in unsuccessful reheating

 \rightarrow For large > O(0.1) couplings, preheating effects lead to the need for backreaction to be

considered

Fig 3: example of a full analysis

My trajectory: Born in Nepal → Grew up in India → Now in Hamburg, Germany

1st year PhD student at

Physics: Early Universe Cosmology

Hobbies: Music, the gym and sports, and cooking

house I was born in

Fun fact: Lightning did not give me superpowers :(

THANK YOU