High-Frequency Gravitational Waves from Phase Transitions in Nascent Neutron Stars

Katarina Bleau
Johannes Gutenberg University Mainz
31.07.2025

In collaboration with Joachim Kopp, Jiheon Lee and Jorinde van de Vis

Introduction

- Core could consist of deconfined quark matter
- Phase transition from hadronic matter to quarkgluon plasma

 Unique opportunity for high-frequency GW detectors to probe extreme regime of QCD

Barni, Blasi, Vanvlasselaer, arXiv:2406.01596v2

Characteristic Strain

$$h_c^2 = \frac{8\pi G}{2\pi^2} \frac{\rho_{GW}}{f_p^2}$$

$$h_c^2 = \frac{(8\pi G)^2}{2\pi^2} \frac{1}{f_p^2} (e+p)^2 \bar{U_f}^4 t R \tilde{\Omega}_{GW}$$

- Peak frequency (~MHz, depends on bubble separation)
- Energy density and pressure (from neutron star equation of state)
- Root mean square fluid velocity (from bubble dynamics and phase transition strength)
- Time duration of the source (min. of light crossing time and shock formation time)
- Mean bubble separation (from timescale of phase transition and bubble wall velocity)
- Efficiency of gravitational waves from sound waves (from previous numerical simulations)

Also:

• Suppressed if phase transition is stalled/incomplete

Pipeline

Define equation of state

(critical pressure, phase transition strength, input for TOV solver)

Solve TOV equations

(mass-radius relation, size of quark core)

Calculate bubble wall velocity

Neutron Star Model

- Need equation of state (EoS) to determine relation between pressure, energy density, baryon number density, and chemical potential
- Solve Tolman–Oppenheimer–Volkoff equations to get mass-radius relation and size of quark core

Katarina Bleau, JGU Mainz