Tackling the Axion Isocurvature Problem with Modulus Field Kination

Chandrika Chandrashekar & Matthew Reece
Harvard University
Cargese Summer School
July 30, 2025

Construct a Cosmological Scenario for the QCD axion* where:

- 1. QCD axion avoids quality problem
- 2. QCD axion comprises *all* the dark matter
- 3. Supports high inflationary energy scale

* QCD axion = axion that solves the strong CP problem

Construct a Cosmological Scenario for the QCD axion* where:

- QCD axion avoids quality problem → consider axions that come from extra dimensional gauge fields
- 2. QCD axion comprises all the dark matter
- 3. Supports high inflationary energy scale

* QCD axion = axion that solves the strong CP problem

Extra Dimensional Axions Seed Isocurvature Fluctuations

High Quality Axions \rightarrow Extra-dimensional axions \rightarrow around during inflation \rightarrow seed isocurvature^[1,2]

Inflation with Inflaton Only

 \Rightarrow initial fluctuations are adiabatic^[3]

Extra Dimensional Axions Seed Isocurvature Fluctuations

High Quality Axions \rightarrow Extra-dimensional axions \rightarrow around during inflation \rightarrow seed isocurvature^[1,2]

Inflation with Inflaton Only

 \Rightarrow initial fluctuations are adiabatic^[3]

Inflation with Inflaton and Spectator Field

⇒ initial fluctuations are *non-adiabatic*

Known as "isocurvature"

Isocurvature Constraints from the CMB

$$\left(\frac{H_{inf}}{\pi f \theta_i}\right)^2 \lesssim 8 \cdot 10^{-11}$$

$$\longrightarrow H_{inf} \lesssim \theta_i \left(\frac{f}{10^{12} \, GeV}\right) 10^7 \, GeV$$

For QCD axion to comprise all the dark matter, we need $f \approx 10^{12}$ GeV [2,3]

⇒ Low inflationary Hubble scale

Problem: inflation with low H_{inf} tends to end prematurely^[4]

"Axion Isocurvature Problem"

^[1] Ciaran A. J. O'Hare. arXiv:2403.17697v2 (2024)

^[2] David Marsh. arXiv:1510.07633v2 (2016)

^[3] Ciaran A. J. O'Hare. arXiv:2403.17697v2 (2024)

Allowing a Larger H_{inf} with $Time\ Varying\ Axion\ Decay\ Constant$

f need not be constant throughout cosmic history.

We want:

- (1) Constant $f \approx 10^{12}$ GeV after reheating (DM abundance constraints).
- (2) $f > 10^{12}$ GeV during inflation to allow for larger H_{inf} (isocurvature constraints).
- \Rightarrow Need a mechanism that allows f to decrease between inflation and reheating

Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold $M = X_{4D} \times Y_{nD}$ with gauge field A

In the 4D EFT we find:

An **axion** θ coming from the KK zero mode of A

Axion decay constant:

$$f^2 \propto \frac{1}{\mathcal{V}_V}$$

where \mathcal{V}_{γ} = volume of Y_{nd}

8

Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold $M = X_{4D} \times Y_{nD}$ with gauge field A In the 4D EFT we find:

An **axion** θ coming from the KK zero mode of A

Axion decay constant:

$$f^2 \propto \frac{1}{\mathcal{V}_Y}$$

where $\mathcal{V}_{y} = \text{volume of } Y_{\text{nd}}$

A bulk modulus field ϕ

 ϕ sets the overall volume of the extra dimensional manifold: $\mathscr{V}_{_{Y}} \simeq \operatorname{Exp}[\#\phi/M_{_{P}}]$

Has an exponentially decaying potential $V(\phi) \sim \exp(-\phi)^{-V[\phi]}$

Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold $M = X_{4D} \times Y_{nD}$ with gauge field A In the 4D EFT we find:

An **axion** θ coming from the KK zero mode of \boldsymbol{A}

Axion decay constant:

$$f^2 \propto \frac{1}{\mathcal{V}_Y}$$

where \mathcal{V}_{Y} = volume of Y_{nd}

A bulk modulus field ϕ

 ϕ sets the overall volume of the extra dimensional manifold: $\mathscr{V}_{\gamma} \simeq \operatorname{Exp}[\#\phi/M_{p}]$

Has an exponentially decaying potential

$$V(\phi) \sim \exp(-\phi)$$
 $V(\phi)$

 ϕ increases \Rightarrow Volume \mathscr{V} increases \Rightarrow f decreases

Cosmic History with Bulk Modulus Field

[1] Conlon, Joseph P., and Filippo Revello. "Catch-me-if-you-can: the overshoot problem and the weak/inflation hierarchy." *Journal of High Energy Physics* 2022. [2] *Fien Apers et al., arXiv:2401.04064 (2024).*

Ending Kination with Matter/Radiation

Need to end kination to avoid decompactification

⇒ modulus overshoots the minimum^[1]

$$\mathcal{L} \supset rac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V$$

$$\ddot{\phi} + 3H\dot{\phi} = 0$$

$$H^{2} = \frac{\dot{\phi}^{2}}{6M_{P}^{2}} = \left(\frac{\dot{a}}{a}\right)^{2}$$

$$\phi(t) = \phi_{0} + \sqrt{\frac{2}{3}} M_{P} \ln(t/t_{0})$$

$$\Rightarrow \rho_{kination} \sim \dot{\phi}^{2} \sim \frac{1}{a^{6}}$$

$$\phi(t) = \phi_0 + \sqrt{\frac{2}{2}} M_P \ln(t/t_0)$$

$$ho_{matter} \sim rac{1}{a^3} \qquad
ho_{radiation} \sim rac{1}{a^4}$$

Modulus trapped if kination ends before $\phi_{\min}^{[1,2]}$

Thank You!

Backup Slides

Motivation Overview

QCD Axion: A Solution to the Strong CP Problem

[1] Hook, Anson. arXiv:1812.02669 (2018).[2] Reece, Matthew. arXiv:2304.08512 (2023).[3] Abel, Christopher, et al. Physical Review

Letters 124.8 (2020): 081803.

The QCD Lagrangian has a CP violating term^[1,2]:

$$\mathcal{L}_{QCD}\supsetar{ heta}\left(rac{g_s^2}{32\pi^2}
ight)G_{\mu
u}^a ilde{G}^{a\mu
u} \qquad ext{where} \quad ilde{G}^{a\mu
u}=arepsilon^{\mu
ulphaeta}G_{lphaeta}^a$$

Extent of CP violation parametrized by $\, heta$

From neutron EDM measurements^[3]: $\bar{\theta} \leq 10^{-10}$

Introducing the Axion field,
$$\theta$$
, with gluon coupling^[1,2]: $\mathcal{L} \supset \mathcal{L}_{QCD} + \frac{f^2}{2} \partial_{\mu} \theta \, \partial^{\mu} \theta + \theta \left(\frac{g_s^2}{32\pi^2} \right) G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$

Generates periodic axion potential^[1]

Generates periodic axion potential
$$V(heta)=-F_\pi^2 m_\pi^2 \sqrt{1-rac{4m_u m_d}{(m_u+m_d)^2}\sin^2(ar{ heta}+ heta(x))}$$
 minimized at $\langle heta
angle =-e^{-2m_\pi^2} \sqrt{1-rac{4m_u m_d}{(m_u+m_d)^2}\sin^2(ar{ heta}+ heta(x))}$

<u>,</u>

 \Rightarrow Axion dynamically relaxes and cancels CP violating term in \mathcal{L}_{QCD}

The Quality Problem

[1] Hook, Anson. arXiv:1812.02669 (2018). [2] Reece, Matthew. arXiv:2304.08512 (2023).

[3] Abel, Christopher, et al. Physical Review Letters 124.8 (2020): 081803.

The QCD Lagrangian has a CP violating term^[1,2]:

$$\mathcal{L}_{QCD} \supset \bar{\theta} \left(\frac{g_s^2}{32\pi^2} \right) G_{\mu\nu}^a \tilde{G}^{a\mu\nu}$$

Extent of CP violation parametrized by θ

From neutron EDM measurements^[3]: $\bar{\theta} < 10^{-10}$

Introduce the axion, θ , with periodic potential V_{occ} minimized at $\left< \theta \right> = - ar{\theta}^{-}$ [1]

But, adding higher order axion operators will generically break CP symmetry^[2]

In order to preserve CP symmetry, we would need to justify neglecting these operators

⇒ known as the **Quality Problem**

(2) A couples to charged fields

Alleviating the Quality Problem with Extra Dimensional Axions

Set up: θ comes from higher dimensional gauge field $A^{[1]}$

Coupling of A to G generates V_{QCD} in 4D

To spoil CP, we need non-derivative axion terms

- ⇒ non-derivative gauge terms in higher dimensions
- ⇒ gauge symmetries permit two kinds of terms
- (1) A couples to other gauge fields

Covariant derivative generates axion
$$V_{extra} \sim V_{QCD} \sim e^{-\#R}$$

Where R is the size of the extra dimensions

⇒ We will be working with extra dimensional axions

QCD Axions as All the Dark Matter

Ample evidence for dark matter (DM) from

CMB

Large Scale Structure

Strong Lensing

[21]

We know DM comprises ~85% of the mass of the universe.

Interacts weakly with Standard Model.

Could extra dimensional QCD axions comprise all the dark matter?

^{[1] &#}x27;Cosmic Microwave Background', Wikipedia.

Axions as Dark Matter Through Misalignment Mechanism

Could extra dimensional QCD axions comprise all the dark matter?

Scale invariant power spectrum \Rightarrow inflation in 4D [1,2]

⇒ extra dimensional axions around during inflation

[1] Anchordoqui, Luis A., and Ignatios Antoniadis. arXiv: 2310.20282v2 (2024)[2] Ignatios Antoniadis et al., arXiv: 2311.17680v2 (2024)

[3] David Marsh. arXiv: arXiv:1510.07633v2 (2016) [4] Ciaran A. J. O'Hare. arXiv:2403.17697v2 (2024)

Large H_{inf} freezes axion in field space at random θ value^[3,4]

Axion begins to roll when H falls below m_{a}

Oscillations around minimum behave like matter^[3,4]

Comoving energy once oscillating:
$$\rho_a = \frac{1}{2} m_a^2 f^2 \theta_i^2$$

Dark matter density bounds $\Rightarrow f \approx 10^{12} \text{ GeV}^{[3,4]}$

Quantifying Axion Isocurvature Fluctuations

In dS, scalar fields with $m \ll H$ have fluctuations^[1,2]

$$\langle \delta a^2 \rangle = \left(\frac{H_{inf}}{2\pi}\right)^2 \qquad a = f\theta \qquad \langle \delta \theta^2 \rangle = \left(\frac{H_{inf}}{2\pi f}\right)^2$$

Fluctuations in θ turn into *isocurvature* matter fluctuations during oscillations:

$$\rho_a = \frac{1}{2}m_a^2 a_i^2 = \frac{1}{2}m_a^2 f^2 \theta_i^2 \qquad \delta \rho_{a,iso} = m_a^2 f^2 \theta_i \delta \theta$$

Axion fluctuations obtain adiabatic component due to misalignment mechanism

Larger local H ⇒ later oscillations ⇒ larger local DM density

$$\mathcal{P}_a(k) = \mathcal{P}_{a, adiabatic}(k) + \mathcal{P}_{a, iso}(k)$$

Low Inflationary Energy Scales ⇒ Less Robust Inflation

Low inflationary Hubble scales ⇒ small inflaton field displacement

- ⇒ Small initial inhomogeneities in inflaton field can end inflation too soon
- [1] showed that for $H_{inf} \lesssim 10^7$ GeV, inflation ends prematurely (with $\sim \phi^4$ inflation model)

Low Inflationary Energy Scale ⇒ Small Field Displacement

Tensor power spectrum amplitude

Scalar power spectrum amplitude

$$r \equiv \frac{A_t}{A_s} \qquad A_t = \frac{2H_*^2}{\pi^2 M_P^2} \qquad A_s = \left(\frac{H_*^2}{2\pi \dot{\phi}_*}\right)^2 \quad \Rightarrow \quad r = \frac{8}{M_P^2} \left(\frac{\mathrm{d}\phi}{\mathrm{d}N}\right)^2$$

$$A_s = \left(\frac{H_*^2}{2\pi\dot{\phi}_*}\right)^2$$

$$\frac{H_*}{M_P} = \frac{\pi}{\sqrt{2}} \sqrt{A_s r} \quad \Rightarrow \quad \frac{\Delta \phi}{H_*} = \frac{N}{2\pi} \sqrt{\frac{1}{A_s}} \quad \Leftarrow \quad \frac{\Delta \phi}{M_P} = N \sqrt{\frac{r}{8}}$$

$$\frac{1}{M_P} = \frac{1}{\sqrt{2}} \sqrt{A_s r}$$

Bulk Axions as Seeds of Radiation

In type IIB string theories, the bulk modulus couples to a bulk axion^[1]:

$$\mathcal{L} \supset rac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + rac{3 M_P^2}{4} \exp \left[-2 \sqrt{rac{2}{3}} rac{\phi}{M_P}
ight] \partial_{\mu} heta_b \, \partial^{\mu} heta_b \qquad \qquad heta_{\mathrm{b}} = \mathrm{bulk} \; \mathrm{axion}$$

Assume we start with zero bulk axion particles after inflation.

Two ways to produce bulk axions:

- 1) Cosmological particle production
- 2) Bulk modulus "decays" into bulk axions

Enough to trap bulk modulus?

Bulk Axion Mode Equation of Motion

Mode EOM:

$$\ddot{\chi}_k + \left(3H(t) - \frac{2}{M_P}\sqrt{\frac{2}{3}}\dot{\phi}\right)\dot{\chi}_k + \frac{k^2}{a^2}\chi_k = 0$$

$$H^2 = \frac{\dot{\phi}^2}{6M_P^2}$$

$$\ddot{\chi}_k - H \,\dot{\chi}_k + \frac{k^2}{a^2} \,\chi_k = 0 \qquad \qquad \chi_k(t) = a^{1/2}(t) \,X_k(t)$$

 $\ddot{X}_k + \omega_k^2 X_k = 0$

where
$$\left|\omega_k^2(t)\right|\equiv rac{k^2}{a^2(t)}-rac{3}{4}H^2(t)+rac{1}{2}rac{\ddot{a}(t)}{a(t)}
ight|$$

Calculating Bulk Axion Particle Number and Energy Density

$$\ddot{X}_k + \omega_k^2 X_k = 0$$
 ansatz $X_k(t) = \frac{\alpha_k(t)}{\sqrt{2\omega}} e^{i\int \omega dt} + \frac{\beta_k(t)}{\sqrt{2\omega}} e^{-i\int \omega dt}$

 α and β are known as Bogoliubov coefficients, and we can determine particle number density $n_{\nu}(t)$ from β :

$$n_k(t) = |\beta_k(t)|^2 = \frac{\omega_k}{2} \left(\frac{|\dot{X}_k|^2}{\omega_k^2} + |X_k|^2 \right) - \frac{1}{2}$$
$$\rho_\gamma \sim \int k^2 dk \, (n_k \omega_k)$$

 \Rightarrow solve for mode functions $X_{\nu}(t)$

 \Rightarrow determine energy density stored in bulk axions ($\varrho_{_{_{\mathcal{V}}}}$)

$$|\alpha|^2 - |\beta|^2 = 1$$

p-cycles and C^(p) compactifications

"p-cycles" are p-dimensional submanifolds which:

- Have no boundary
- Are not a boundary themselves

Image credit: Wikipedia

Preliminary Results

Scenario with Largest Possible H_{inf}

$$f\lesssim M_P$$
 isocurvature constraint $H_{inf}\lesssim 5\cdot 10^{13}\,{
m GeV}$
$$\Delta\phi\lesssim 24$$
 taking $f_{RH}\approx 10^{12}\,{
m GeV}$

In the Large Volume Scenario (LVS) of Type IIB Compactifications, modulus potential is given by [1]:

$$V(\phi) = V_0 \left((1 - \epsilon \, (\phi/M_P)^{3/2}) e^{-\sqrt{\frac{27}{2}} \phi/M_P} + \underbrace{Ce^{-10\phi/\sqrt{6}M_P} + De^{-11\phi/\sqrt{6}M_P}}_{\text{Generates local AdS minimum at } \phi \sim \epsilon^{-2/3} \right) + \underbrace{Ce^{-10\phi/\sqrt{6}M_P} + De^{-11\phi/\sqrt{6}M_P}}_{\text{Generates flat portion minimum to dS, V>0} + \underbrace{\delta e^{-\sqrt{6}\phi/M_P}}_{\text{uniflation epoch minimum to dS, V>0}}_{\text{minimum to dS, V>0}} V(\phi) + \underbrace{\delta e^{-\sqrt{6}\phi/M_P}}_{\text{inflation epoch minimum to dS, V>0}}_{\text{minimum to dS, V>0}} V(\phi) + \underbrace{\delta e^{-\sqrt{6}\phi/M_P}}_{\text{only inflation epoch minimum to dS, V>0}}_{\text{only inflation epoch minimum to dS, V>0}}$$

Chose LVS parameters that yield $\,H_{inf} pprox 2 \cdot 10^{13} \, {
m GeV}\,$ and $\,\Delta \phi pprox 23\,$

Solving for Modulus Evolution

With $H_{inf} \approx 2 \cdot 10^{13} \, {\rm GeV}$ we source $\rho_{\gamma,K} \approx 10^{-12} \rho_{inf}$ in bulk axions

Modulus evolution given by:

$$\ddot{\phi} + 3H(t)\dot{\phi} + \frac{dV}{d\phi} = 0$$
 & $H(t) = \frac{1}{\sqrt{3}M_P} \sqrt{\frac{\rho_{\gamma,K}}{a^4} + \frac{1}{2}\dot{\phi}^2 + V(\phi)}$

Preliminary Result: Not Enough Bulk Axion Production to Trap Modulus

 $\phi(\tau)/M_P$

30

preliminary result

We find that the modulus does *not* get trapped

However, if we increase $\varrho_{v,K}$ by a factor of ~250, we can trap the modulus field

20

30

Next Steps

Consider perturbations in modulus field

These redshift like radiation^[1]

⇒ could help trap modulus field^[2]

Consider additional axions (the supersymmetric partners of stabilized moduli)

Consider LVS potentials with two minima^[3]

⇒ could slow down the modulus field

[1] Eröncel, Cem, et al. "A universal bound on the duration of a kination era." arXiv: 2501.17226 (2025).

[2] Martin Mosny, Joseph Conlon, Edmund Copeland. "Self-Tracking Solutions for Asymptotic Scalar Fields." arXiv: 2507.04161v1 (2025).

[3] AbdusSalam, Shehu, et al. "Coexisting Flux String Vacua from Numerical Kahler Moduli Stabilisation." arXiv:2507.00615 (2025).

Extra Dimensional Compactifications and 4D Dynamics

Axions from Extra Dimensional Gauge Fields

Consider: 5 dimensional manifold with 5th dimension a compact circle of radius R, $M = X_{Ad} \times S^{1}$

with 1-form gauge field **A** living in 5D $ec{A}=A_{\mu}x^{\mu}+A_{5}x^{5}$

How does the 5D field A manifest in 4D?

5D kinetic term:
$$S = \int\limits_{X_{Ad} \times S^1} \sqrt{\det[g_{MN}]} \, \mathrm{d}^5 x \left(-\frac{1}{4e_5^2} \, F_{MN} F^{MN} \right)$$

where $F_{MN} = \partial_M A_N - \partial_N A_M \sim (\partial_\mu A_\nu - \partial_\nu A_\mu) + (\partial_\mu A_5 - \partial_5 A_\mu)$

$$A_{\mu}(x_{\mu}, x_{5}) = \sum_{n=-\infty}^{\infty} e^{inx_{5}/R} \tilde{A}_{\mu}^{(n)}(x^{\mu}) \qquad A_{5}(x_{\mu}, x_{5}) = \sum_{n=-\infty}^{\infty} e^{inx_{5}/R} \phi^{(n)}(x^{\mu}) \qquad \tilde{A}^{(-n)} = (\tilde{A}^{(n)})^{*}$$
$$\phi^{(-n)} = (\phi^{(n)})^{*}$$

Define **axion** as zero mode of $A_5^{[1]}$: $\theta(x_\mu) \equiv \int_0^{2\pi R} A_5(x_\mu, x_5) \, \mathrm{d}x_5 = 2\pi R \, \phi^{(0)}(x^\mu)$

Axions from Extra Dimensional Gauge Fields

Consider: 5 dimensional manifold with 5th dimension a compact circle of radius R, $M = X_{Ad} \times S^{1}$

with 1-form gauge field **A** living in 5D $\ ec{A}=A_{\mu}x^{\mu}+A_{5}x^{5}$

5D kinetic term:
$$S = \int_{X_{4d} \times S^1} \sqrt{\det[g_{MN}]} d^5x \left(-\frac{1}{4e_5^2} F_{MN} F^{MN} \right)$$

ansatz:
$$A_{\mu}(x_{\mu}, x_{5}) = \sum_{n=-\infty}^{\infty} e^{inx_{5}/R} \tilde{A}_{\mu}^{(n)}(x^{\mu})$$
 and $A_{5}(x_{\mu}, x_{5}) = \sum_{n=-\infty}^{\infty} e^{inx_{5}/R} \phi^{(n)}(x^{\mu})$

Define axion as zero mode of
$$A_5^{[1]}$$
: $\theta(x_{\mu}) \equiv \int_0^{2\pi R} A_5(x_{\mu}, x_5) \, \mathrm{d}x_5 = 2\pi R \, \phi^{(0)}(x^{\mu})$

Extra Dimensional Axions have Decay Constants that Depend on Extra Dimensional Geometry

Recall:
$$A_5(x_{\mu}, x_5) = \sum_{n=-\infty}^{\infty} e^{inx_5/R} \phi^{(n)}(x^{\mu})$$

$$\mathcal{L}_{4d} \supset -\frac{1}{4e_5^2} \int_{S^1} \left(\partial_{\mu} A_5 \right)^2 = \frac{2\pi R}{4e_5^2} \sum_n \left(\partial_{\mu} \phi^{(n)} \right) \left(\partial^{\mu} \phi^{(n)} \right)$$

$$\label{eq:theta_energy} iggledown$$
 Zero mode, using $\ \theta(x_\mu) = \ 2\pi R \, \phi^{(0)}(x^\mu)$

$$oxed{{\cal L}_{4d}\supsetrac{1}{2}\,f^2\partial_{\mu} heta\,\partial^{\mu} heta}$$
 where $egin{aligned} f^2=rac{1}{2\pi Re_5^2} \end{aligned}$

More *generally*, for a higher dimensional manifold^[1]

$$M = X_{4D} \times Y_{nD}$$

$$f^2 \propto rac{1}{\mathcal{V}_V}$$

where $\mathcal{V}_{\mathbf{y}}$ = volume of Y_{nd}

Extra Dimensional Axions have Decay Constants that Depend on Extra Dimensional Geometry

$$A_5 \rightarrow A_5 + \partial_5 \alpha$$
 where $\alpha = x_5/R$

$$\theta(x_{\mu}) \equiv \int_{0}^{2\pi R} A_{5}(x_{\mu}, x_{5}) dx_{5} \rightarrow \theta(x_{\mu}) + 2\pi \implies \theta \text{ is } 2\pi \text{ periodic } \checkmark$$

Recall:
$$A_5(x_{\mu}, x_5) = \sum_{n=-\infty}^{\infty} e^{inx_5/R} \phi^{(n)}(x^{\mu})$$

$$\mathcal{L}_{4d} \supset -\frac{1}{4e_5^2} \int_{S^1} \left(\partial_{\mu} A_5 \right)^2 = \frac{2\pi R}{4e_5^2} \sum_n \left(\partial_{\mu} \phi^{(n)} \right) \left(\partial^{\mu} \phi^{(n)} \right)$$

$$\label{eq:theta_energy} iggleft$$
 Zero mode, using $\ \theta(x_\mu) = \ 2\pi R \, \phi^{(0)}(x^\mu)$

$$oxed{{\cal L}_{4d}\supsetrac{1}{2}\,f^2\partial_{\mu} heta\,\partial^{\mu} heta}$$
 where $egin{aligned} f^2=rac{1}{2\pi Re_5^2} \end{aligned}$

More *generally*, for a higher dimensional manifold^[1]

$$M = X_{4D} \times Y_{nD},$$

$$f^2 \propto rac{1}{\mathcal{V}_Y}$$

where $\mathcal{V}_{\mathbf{y}}$ = volume of Y_{nd}

Compactifying Extra Dimensions Generically Leads to a Scalar Field with Exponential Potential in 4D

Again start with higher dimensional manifold $M = X_{4D} \times Y_{nD}$

$$ds^2=g_{MN}(X)\,dX^MdX^N=g_{\mu\nu}(x)\,dx^\mu dx^\nu+\lambda^2(x)g_{mn}(y)\,dy^m dy^n$$
 Overall volume of Y depends on position in 4D $S_{EH}=\int_M \sqrt{\det[g_{MN}]}\,\,\mathcal{R}_{(4+n)D}\,\,M_{(4+n)}^{2+n}\,d^4x\,d^ny$

$$\mathcal{R}_{(4+n)D} = \mathcal{R}_{4D} + \underbrace{\frac{\mathcal{R}_{nD}(y)}{\lambda^2(x)}}_{\text{Potential term}} + \underbrace{\#\frac{1}{\lambda^2(x)}\,g^{\mu\nu}(x)\,\partial_{\mu}\lambda(x)\,\partial_{\nu}\lambda(x)}_{\text{Kinetic term}} \\ \qquad \qquad \qquad \sim \partial_{\mu}\Phi\,\partial^{\mu}\Phi$$
 Canonical field:
$$\lambda(x) = e^{\Phi(x)}$$
 bulk modulus field:
$$\phi(\mathbf{x}) = M_{_{D}}\Phi(\mathbf{x})$$

Compactifying Extra Dimensions Generically Leads to a Scalar Field with Exponential Potential in 4D

Again start with higher dimensional manifold $M = X_{AD} \times Y_{DD}$

$$ds^2 = g_{MN}(X) \, dX^M dX^N = g_{\mu\nu}(x) \, dx^\mu dx^\nu + \boxed{\lambda^2(x)} g_{mn}(y) \, dy^m dy^n$$
 Overall volume of Y depends on position in 4D
$$S_{EH} = \int_M \sqrt{\det[g_{MN}]} \, \mathcal{R}_{(4+n)D} \, M_{(4+n)}^{2+n} \, d^4x \, d^ny$$

$$\det[g_{MN}] = \lambda^{2n}(x) \det[g_{\mu\nu}(x)] \det[g_{mn}(y)]$$

$$\mathcal{R}_{(4+n)D} = \mathcal{R}_{4D} + \frac{\mathcal{R}_{nD}(y)}{\lambda^2(x)} + \# \frac{1}{\lambda^2(x)} g^{\mu\nu}(x) \partial_{\mu}\lambda(x) \partial_{\nu}\lambda(x)$$

Potential term <

Canonical field: $\lambda(x) = e^{\Phi(x)}$

Weyl rescaling: $\tilde{g}_{\mu\nu} = \lambda^n(x)g_{\mu\nu}$

Kinetic term
$$\longrightarrow \sim \partial_{\mu}\Phi \, \partial^{\mu}\Phi$$

$$|V(\Phi) \sim (e^{-\Phi})^{n+2}$$

 $\overline{V(\Phi) \sim (e^{-\Phi})^{n+2}}$ bulk modulus field: $\phi = M_{p}\Phi$

Higher dimensional Planck constant

Bulk Modulus Induces Dynamical Axion Decay Constant

Extra dimensional compactifications also generically lead to 'modulus fields'

Bulk modulus field, ϕ :

- Characterizes overall volume of the extra dimensional manifold: $\mathcal{V}_{V} \simeq \exp[\#\phi/M_{p}]$
- Has an exponential potential $V(\phi) \sim \exp(-\phi)$

$$f^2 \sim 1/\mathcal{V}_{\gamma} \sim \text{Exp}[-\#\phi/M_p]$$

Dynamical $\phi \Rightarrow$ dynamical f!

Steep potential \Rightarrow fast roll \Rightarrow kination

 \Rightarrow large $\Delta \phi \Rightarrow$ large $\Delta \mathscr{V}_{\mathbf{v}} \Rightarrow$ large Δf

Bulk Axions as Seeds of Radiation

In type IIB string theories, the bulk modulus couples to a bulk axion^[1]:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{3 M_P^2}{4} \exp \left[-2 \sqrt{\frac{2}{3}} \frac{\phi}{M_P} \right] \partial_{\mu} \theta_b \, \partial^{\mu} \theta_b \qquad \qquad \theta_{\mathrm{b}} = \mathrm{bulk \ axion}$$

Assume we start with zero bulk axion particles after inflation.

Two ways to produce bulk axions:

- 1) Cosmological particle production
- 2) Bulk modulus "decays" into bulk axions

Enough to trap bulk modulus?

Bulk Axion Mode Equation of Motion

$$\ddot{\theta}_b + \left(3H(t) - \frac{2}{M_P}\sqrt{\frac{2}{3}}\dot{\phi}\right)\dot{\theta}_b - \frac{1}{a^2}\nabla^2\theta_b = 0 \qquad \qquad H^2 = \frac{\dot{\phi}^2}{6M_P^2} \qquad \ddot{\theta}_b - H(t)\dot{\theta}_b - \frac{1}{a^2}\nabla^2\theta_b = 0$$

$$\hat{\theta}_b(x,t) = \int d^3k \left[\hat{a}_k \chi_k(t) e^{-ikx} + \hat{a}_k^\dagger \chi_k^*(t) e^{ikx} \right] \quad \text{where} \quad \left[\hat{a}_k, \hat{a}_k^\dagger \right] = 1$$

Mode EOM:

$$\ddot{\chi}_k - H \dot{\chi}_k + \frac{k^2}{a^2} \chi_k = 0$$
 $\chi_k(t) = a^{1/2}(t) X_k(t)$ $\ddot{X}_k + \omega_k^2 X_k = 0$

where
$$\omega_k^2(t) \equiv rac{k^2}{a^2(t)} - rac{3}{4}H^2(t) + rac{1}{2}rac{\ddot{a}(t)}{a(t)}$$

Particle Number in Curved Spacetimes

 $\hat{b}_k(t) \equiv \alpha_k(t)\hat{a}_k + \beta_{-k}^*(t)\hat{a}_{-k}^{\dagger}$

Bulk axion quantum field in terms $\hat{\theta}_b(x,t) = \int d^3k \, a^{1/2} \left[\hat{a}_k X_k(t) e^{-ikx} + \hat{a}_k^{\dagger} X_k^*(t) e^{ikx} \right]$ of rescaled mode functions:

of rescaled mode functions:
$$heta_b(x,t)=\int d^3k\, a^{1/2}\left[\,a_k X_k(t)e^{-tkx}+a_k^\dagger X_k^\dagger(t)e^{tkx}\,
ight]$$

$$\ddot{X}_k + \omega_k^2 X_k = 0 \quad \xrightarrow{\text{ansatz}} \quad X_k(t) = \frac{\alpha_k(t)}{\sqrt{2\omega}} e^{i\int \omega dt} + \frac{\beta_k(t)}{\sqrt{2\omega}} e^{-i\int \omega dt}$$

$$|\alpha|^2 - |\beta|^2 = 1$$
 Rewriting mode expansion in terms of $\alpha_{\bf k}$ and $\beta_{\bf k}$:

$$\hat{\theta}_b(x,t) = \int \frac{d^3k \, a^{1/2}}{\sqrt{2\omega}} \left[\left(\alpha_k(t) \, \hat{a}_k + \beta_{-k}^*(t) \hat{a}_{-k}^\dagger \right) e^{-i\int \omega dt} e^{-ikx} \right. \\ \left. + \left(\beta_{-k}(t) \hat{a}_{-k} + \alpha_k^*(t) a_k^\dagger \right) e^{i\int \omega dt} e^{ikx} \right]$$

 $\hat{b}_k^{\dagger}(t) \equiv \alpha_k^*(t)\hat{a}_k^{\dagger} + \beta_{-k}(t)\hat{a}_{-k}$

 $\left[\hat{b}_k, \hat{b}_k^{\dagger}\right] = 1$

Particle Number in Curved Spacetimes Cont'd

$$\hat{a}_k |\Omega\rangle = 0$$

$$n_k(t) \equiv \langle \Omega | \hat{N}_k(t) | \Omega\rangle = \langle \Omega | \hat{b}_k^{\dagger}(t) \hat{b}_k(t) | \Omega\rangle = |\beta_k(t)|^2$$

$$= \frac{\omega_k}{2} \left(\frac{|\dot{X}_k|^2}{\omega_k^2} + |X_k|^2 \right) - \frac{1}{2}$$

- \Rightarrow solve for mode functions $X_{\nu}(t)$
- \Rightarrow determine comoving $n_{\nu}(t)$
- \Rightarrow physical number density given by $n_{k}(t)/a^{3}(t)$