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Construct a Cosmological Scenario for the QCD axion* where: 

1. QCD axion avoids quality problem 

2. QCD axion comprises all the dark matter

3. Supports high inflationary energy scale

2

* QCD axion = axion that solves the strong CP problem



Construct a Cosmological Scenario for the QCD axion* where: 

1. QCD axion avoids quality problem → consider axions that come from extra 

dimensional gauge fields

2. QCD axion comprises all the dark matter

3. Supports high inflationary energy scale

3

* QCD axion = axion that solves the strong CP problem



Extra Dimensional Axions Seed Isocurvature Fluctuations

High Quality Axions → Extra-dimensional axions → around during inflation → seed isocurvature[1,2] 

Inflation with Inflaton Only
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⇒ initial fluctuations are adiabatic[3]
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[2] Ciaran A. J. O’Hare. arXiv:2403.17697v2 (2024) [3] Baumann, Daniel. Cosmology. Cambridge University Press, 2022.



Extra Dimensional Axions Seed Isocurvature Fluctuations

High Quality Axions → Extra-dimensional axions → around during inflation → seed isocurvature[1,2] 

Inflation with Inflaton Only Inflation with Inflaton and Spectator Field

⇒ initial fluctuations are non-adiabatic

Known as “isocurvature”
5
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Isocurvature Constraints from the CMB
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For QCD axion to comprise all the dark matter, we need f ≈ 1012 GeV [2,3]

⇒ Low inflationary Hubble scale

Problem: inflation with low H
inf

 tends to end prematurely[4]

“Axion Isocurvature Problem”

[1]

[1] Ciaran A. J. O’Hare. arXiv:2403.17697v2 (2024)

[2] David Marsh. arXiv:1510.07633v2 (2016)
[3] Ciaran A. J. O’Hare. arXiv:2403.17697v2 (2024)
[4] Clough, Katy, et al. "Robustness of inflation to inhomogeneous initial conditions." Journal of Cosmology and Astroparticle Physics 2017.09 (2017): 025.



Allowing a Larger H
inf

 with Time Varying Axion Decay Constant

f need not be constant throughout cosmic history.

We want:

(1) Constant f  ≈ 1012 GeV after reheating (DM abundance constraints).

(2) f  > 1012 GeV during inflation to allow for larger H
inf

 (isocurvature constraints).

⇒ Need a mechanism that allows f to decrease between inflation and reheating

7



Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold M = X
4D

 x Y
nD

 with gauge field A

In the 4D EFT we find:

8

where 𝒱
Y
 = volume of Y

nd

Axion decay constant:

An axion 𝜃 coming from the KK zero mode of A 



Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold M = X
4D

 x Y
nD

 with gauge field A

In the 4D EFT we find:
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where 𝒱
Y
 = volume of Y

nd

Axion decay constant:

An axion 𝜃 coming from the KK zero mode of A A bulk modulus field 𝜙

𝜙 sets the overall volume of the extra 
dimensional manifold: 𝒱

Y 
 ~ Exp[#𝜙/M

P
]

Has an exponentially decaying potential         

V(𝜙) ~ exp(-𝜙)



Decreasing Axion Decay Constant with Bulk Modulus Evolution

Consider: a (4+n)-dimensional spacetime manifold M = X
4D

 x Y
nD

 with gauge field A

In the 4D EFT we find:

10

where 𝒱
Y
 = volume of Y

nd

Axion decay constant:

An axion 𝜃 coming from the KK zero mode of A A bulk modulus field 𝜙

𝜙 sets the overall volume of the extra 
dimensional manifold: 𝒱

Y 
 ~ Exp[#𝜙/M

P
]

Has an exponentially decaying potential         

V(𝜙) ~ exp(-𝜙)

⇒ f 2 ~ Exp[ - #𝜙/M
P
]

𝜙 increases Volume 𝒱 increases f decreases⇒ ⇒
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Cosmic History with Bulk Modulus Field

Kination = 

energy density 

dominated by 

kinetic energy 

of scalar 

field[1,2]

inflaton = 𝜙 = modulus field

[1] Conlon, Joseph P., and Filippo Revello. "Catch-me-if-you-can: the overshoot problem and the weak/inflation hierarchy." Journal of High Energy Physics 2022.
[2] Fien Apers et al., arXiv:2401.04064 (2024).

f ≈ 1012 GeV

f ≫ 1012 GeV



Ending Kination with Matter/Radiation 

Need to end kination to avoid decompactification
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High kinetic energy 

⇒ modulus overshoots the minimum[1]

⇒ 

[1] Conlon, Joseph P., and Filippo Revello. "Catch-me-if-you-can: the overshoot problem and the weak/inflation hierarchy." Journal of High Energy Physics 2022.
[2] Joseph Conlon et al., arXiv:0806.0809v2 (2008)

Modulus trapped if kination ends before 𝜙
min

[1,2]



Thank You!
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Backup Slides
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Motivation Overview
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QCD Axion of High Quality QCD Axion Comprises

all the Dark Matter

Axion from extra dimensions

Axion present during 

inflation, seeds isocurvature 

amplitude (H
inf 

/f )2

Axion decay constant

f ≈ 1012 GeV

+

Low H
inf 

, less robust inflation

“Axion Isocurvature Problem”



QCD Axion: A Solution to the Strong CP Problem

The QCD Lagrangian has a CP violating term[1,2]:
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where

Introducing the Axion field, 𝜃, with gluon coupling[1,2]:

Generates periodic axion potential[1] 

⇒ Axion dynamically relaxes and cancels CP violating term in

Extent of CP violation parametrized by

𝜃

V(𝜃)

-

[1] Hook, Anson. arXiv:1812.02669 (2018).
[2] Reece, Matthew. arXiv:2304.08512 (2023).

From neutron EDM measurements[3]:

minimized at

[3] Abel, Christopher, et al. Physical Review 
Letters 124.8 (2020): 081803.



The Quality Problem

The QCD Lagrangian has a CP violating term[1,2]:
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Introduce the axion, 𝜃, with periodic potential V
QCD

 

minimized at                      [1]

⇒ Axion dynamically relaxes and cancels CP violating term in

Extent of CP violation parametrized by

[1] Hook, Anson. arXiv:1812.02669 (2018).
[2] Reece, Matthew. arXiv:2304.08512 (2023).

From neutron EDM measurements[3]:

[3] Abel, Christopher, et al. Physical Review 
Letters 124.8 (2020): 081803.

But, adding higher order axion operators will generically break CP symmetry[2] 

In order to preserve CP symmetry, we would need to justify neglecting these operators

⇒ known as the Quality Problem

V(𝜃)

- 𝜃
V

QCD
(𝜃)

V
CPV

(𝜃)

New       vev



Alleviating the Quality Problem with Extra Dimensional Axions

⇒ We will be working with extra dimensional axions 18

(1) A couples to other gauge fields
(2) A couples to charged fields

Covariant derivative generates axion 

potential in 4D

[1] Reece, Matthew. arXiv:2304.08512 (2023).

Set up: 𝜃 comes from higher dimensional gauge field A[1]

Coupling of A to G generates V
QCD

 in 4D

To spoil CP, we need non-derivative axion terms

⇒ non-derivative gauge terms in higher dimensions

⇒ gauge symmetries permit two kinds of terms

Where R is the size of the extra dimensions



QCD Axions as All the Dark Matter

Ample evidence for dark matter (DM) from

19
[1] ‘Cosmic Microwave Background’, Wikipedia.

CMB

We know DM comprises ~85% of the mass of the universe.

Interacts weakly with Standard Model.

Could extra dimensional QCD axions comprise all the dark matter?

Large Scale Structure 

Strong Lensing

[1]

[2]

[3]

[2] ‘Large-scale structure of the universe’, Wikipedia. [3] ‘Strong gravitational lensing’, Wikipedia.



Large H
inf

 freezes axion in field space at random 𝜃 value[3,4]

Axions as Dark Matter Through Misalignment Mechanism

Could extra dimensional QCD axions comprise all the dark matter?

Scale invariant power spectrum ⇒ inflation in 4D [1,2]

⇒ extra dimensional axions around during inflation

20

Axion begins to roll when H falls below m
a

Oscillations around minimum behave like 
matter[3,4]

𝜃

V(𝜃)

𝜃iComoving energy once oscillating:

Dark matter density bounds ⇒ f ≈ 1012 GeV [3,4]

[1] Anchordoqui, Luis A., and Ignatios Antoniadis. 
arXiv: 2310.20282v2 (2024)
[2] Ignatios Antoniadis et al., 
arXiv: 2311.17680v2 (2024)

[3] David Marsh. arXiv: arXiv:1510.07633v2 (2016)
[4] Ciaran A. J. O’Hare. arXiv:2403.17697v2 (2024)



Quantifying Axion Isocurvature Fluctuations

Axion fluctuations obtain adiabatic component due to misalignment mechanism

Larger local H ⇒ later oscillations ⇒ larger local DM density

21

In dS, scalar fields with m≪H have fluctuations[1,2]

Fluctuations in 𝜃 turn into isocurvature matter fluctuations during oscillations:

[1] David Marsh. arXiv: arXiv:1510.07633v2 (2016)
[2] Ciaran A. J. O’Hare. arXiv:2403.17697v2 (2024)



Low Inflationary Energy Scales ⇒ Less Robust Inflation

Low inflationary Hubble scales ⇒ small inflaton field displacement

22
[1] Clough, Katy, et al. "Robustness of inflation to inhomogeneous initial conditions." Journal of Cosmology and Astroparticle Physics 2017.09 (2017): 025.

[1] showed that for H
inf

 ≲ 107 GeV, inflation ends prematurely

(with ~𝜙4 inflation model)

Δ𝜙
𝜙

V(𝜙)

Δ𝜙 ≈ 10-2 M
P
 

⇒ Small initial inhomogeneities in inflaton field can end inflation too soon



Low Inflationary Energy Scale ⇒ Small Field Displacement
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Tensor power 

spectrum amplitude

Scalar power 

spectrum amplitude

⇒

⇒⇒ ⇒

⇒

⇒

⇒

&



Bulk Axions as Seeds of Radiation

𝜃
b
 = bulk axion

24

Assume we start with zero bulk axion particles after inflation.

Two ways to produce bulk axions:

1) Cosmological particle production
2) Bulk modulus “decays” into bulk axions

Enough to trap bulk modulus?

In type IIB string theories, the bulk modulus couples to a bulk axion[1]:

[1] Michele Cicoli et al., arXiv:1208.3562v2 (2012)



Bulk Axion Mode Equation of Motion

25

Mode EOM:

where



Calculating Bulk Axion Particle Number and Energy Density

26

ansatz

𝛼 and 𝛽 are known as Bogoliubov coefficients, and we can 

determine particle number density n
k
(t)

 
from 𝛽:

⇒ solve for mode functions X
k
(t) 

⇒ determine energy density stored in bulk axions ( 𝜌𝛾 )



p-cycles and C(p) compactifications

“p-cycles” are p-dimensional submanifolds which:

● Have no boundary

● Are not a boundary themselves

27

Image credit: Wikipedia



Preliminary Results

28



Scenario with Largest Possible H
inf

29

In the Large Volume Scenario (LVS) of Type IIB Compactifications, modulus potential is given by[1]:

Generates flat portion 

⇒ inflation epoch
Generates local 

AdS minimum at

Uplifts local 

minimum to dS, V>0

[1] Conlon, Joseph P., et al. "Volume modulus inflation and the gravitino mass problem." Journal of Cosmology and Astroparticle Physics 2008.09 (2008): 011.

isocurvature constraint

taking 

In this scenario, volume given by

Chose LVS parameters that yield and



Solving for Modulus Evolution

30

With we source in bulk axions

Modulus evolution given by:

&



Preliminary Result: Not Enough Bulk Axion Production to Trap Modulus

31

We find that the modulus does not get trapped

preliminary result

inflation

kination
However, if we increase 𝜌𝛾,K

 by a factor of ~250, 

we can trap the modulus field

inflation

kination

𝜙
min

Trapped at minimum, 𝜙
min

kination-radiation 

equality

⇒ need additional 

sources of radiation

preliminary result



Next Steps

Consider perturbations in modulus field

These redshift like radiation[1]

32

[1] Eröncel, Cem, et al. “A universal bound on the duration of a kination era." arXiv: 2501.17226 (2025).                

[2] Martin Mosny, Joseph Conlon, Edmund Copeland. “Self-Tracking Solutions for Asymptotic Scalar Fields.” arXiv: 2507.04161v1 (2025).

Consider additional axions (the supersymmetric partners of stabilized moduli)

Consider LVS potentials with two minima[3]

⇒ could help trap modulus field[2]

[3] AbdusSalam, Shehu, et al. "Coexisting Flux String Vacua from Numerical Kahler Moduli Stabilisation." arXiv:2507.00615 (2025).

⇒ could slow down the modulus field



Extra Dimensional Compactifications
and 4D Dynamics

33



Axions from Extra Dimensional Gauge Fields

34
Define axion as zero mode of A

5
[1]:

Consider: 5 dimensional manifold with 5th dimension a compact circle of radius R,

M = X
4d

 x S1 

with 1-form gauge field A living in 5D

5D kinetic term:

where

How does the 5D field A manifest in 4D?

[1] Matthew Reece. arXiv:2304.08512 (2023).



Axions from Extra Dimensional Gauge Fields

35

Define axion as zero mode of A
5

[1]:

Consider: 5 dimensional manifold with 5th dimension a compact circle of radius R,

M = X
4d

 x S1 

with 1-form gauge field A living in 5D

5D kinetic term:

[1] Matthew Reece. arXiv:2304.08512 (2023).

ansatz: and



Extra Dimensional Axions have Decay Constants that Depend on 
Extra Dimensional Geometry

36

Recall: 

⇒

Zero mode, using

where 

More generally, for a higher 

dimensional manifold[1] 

M = X
4D

 x Y
nD 

,

where 𝒱
Y
 = volume of Y

nd

[1] Matthew Reece. arXiv: 2406.08543 (2024).



Extra Dimensional Axions have Decay Constants that Depend on 
Extra Dimensional Geometry

37

where

⇒ 𝜃 is 2𝜋 periodic ✓

Recall: 

⇒

Zero mode, using

where 

More generally, for a higher 

dimensional manifold[1] 

M = X
4D

 x Y
nD 

,

where 𝒱
Y
 = volume of Y

nd

[1] Matthew Reece. arXiv: 2406.08543 (2024).



Compactifying Extra Dimensions Generically Leads to a Scalar 
Field with Exponential Potential in 4D

Again start with higher dimensional manifold M = X
4D

 x Y
nD

  

38

Overall volume of Y 

depends on position in 4D

Potential term Kinetic term

Canonical field: bulk modulus field: 
𝜙(x) = M

P
𝛷(x) 



Compactifying Extra Dimensions Generically Leads to a Scalar 
Field with Exponential Potential in 4D

Again start with higher dimensional manifold M = X
4D

 x Y
nD

  

39

Overall volume of Y 

depends on position in 4D

Higher dimensional Planck constant

Potential term Kinetic term

Weyl rescaling:

Canonical field:
bulk modulus field: 𝜙 = M

P
𝛷 



Bulk Modulus Induces Dynamical Axion Decay Constant

Extra dimensional compactifications also generically lead to ‘modulus fields’

Bulk modulus field, 𝜙:

● Characterizes overall volume of the extra dimensional manifold: 𝒱
Y 

 ~ Exp[#𝜙/M
P
]

● Has an exponential potential V(𝜙) ~ exp(-𝜙)

40

Steep potential ⇒ fast roll ⇒ kination

⇒ large Δ𝜙 ⇒ large Δ𝒱
Y
 ⇒ large Δf 

f 2 ~ 1/𝒱
Y
 ~ Exp[ - #𝜙/M

P
]

Dynamical 𝜙 ⇒ dynamical f
 
!



Bulk Axions as Seeds of Radiation

𝜃
b
 = bulk axion

41

Assume we start with zero bulk axion particles after inflation.

Two ways to produce bulk axions:

1) Cosmological particle production
2) Bulk modulus “decays” into bulk axions

Enough to trap bulk modulus?

In type IIB string theories, the bulk modulus couples to a bulk axion[1]:

[1] Michele Cicoli et al., arXiv:1208.3562v2 (2012)



Bulk Axion Mode Equation of Motion
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where

Mode EOM:

where



Particle Number in Curved Spacetimes

43

ansatz

“Bogoliubov Transformations”

Bulk axion quantum field in terms 

of rescaled mode functions:

Rewriting mode expansion in terms of 𝛼
k
 and 𝛽

k
:



Particle Number in Curved Spacetimes Cont’d

44

⇒ solve for mode functions X
k
(t)

⇒ determine comoving n
k
(t)

⇒ physical number density given by n
k
(t)/a3(t)


