Hey! I know you are all tired, BUT

am Bai

From Weizmann Institute

Phenomenologies associate with

Ultralight Field Backgrounds

- Scalars,
- Vectors...
- Dark Matter
- or non-dark Matter

For real...

Superradiance + Spectroscopic Enhanced Phenomenology

Zhaoyu Bai @ Cargese 2025.07.30

Keep in mind...

Superradiance forms without the assumption of dark matter.

Keep in mind...

And the Amplitude is Huge:

$$\phi_0^{\rm max} \approx 0.07\,\alpha_G^2 M_{\rm pl} \sqrt{\frac{M_{\rm cloud}}{M_{\rm BH}}} \approx 0.5\,\alpha_G f_\phi$$

Superradiance Scalars backgrounds — Axions/ALP/Generic Ultralight particles

S-Star Spectroscopy

Existing S2 Star Observation — To Future Prospect

- Cadence (exposure time): 10 or 15 mins.
- Over a period of 25 days, Daily averages of 3 hours of observations.
- Most Relevant Observation Period (2017/2018): Periastron
- The median uncertainty for Hydrogen $\frac{\delta \lambda_j}{\lambda_j}$ is 10^{-4} $\frac{10 \text{km/s uncertainty of RV.}}{v_{\text{perihelion}} pprox 7,600 \, \text{km/s}}$
- Future: $\frac{\delta\lambda}{\lambda}\approx 3\times 10^{-6}$ HISPEC (anticipated in 2026) and MODHIS (2030)
- Future Radial Velocity Precision (with multi-band analysis): ~30 cm/s.

^{*} We primarly focused on the Hydrogen line for S2 Star analysis

Projected sensitivity on the quadratic scalar-photon coupling

$$rac{C_{\gamma}}{4} \; rac{\phi^2}{f_{\phi}^2} \, F_{\mu
u} F^{\mu
u}$$

As a benchmark

$$|C_{\gamma}| \approx 3 \times 10^{-5}$$

Results

- Current data: Gemini/NIFS over 25 days in 2017–2018.
- Future prospects: HISPEC/MODHIS projections incorporating:
 - 10³ -fold better spectroscopic resolution
 - 1/2 observing cadence
 - 10-fold longer total observation days
 - A late-type star with a semi-major axis
 10% that of S2
- Constraint independent on f_{ϕ}

$$\phi_0^{\rm max} \approx 0.07\,\alpha_G^2 M_{\rm pl} \sqrt{\frac{M_{\rm cloud}}{M_{\rm BH}}} \approx 0.5\,\alpha_G f_\phi$$

$$rac{C_{\gamma}}{4} rac{\phi^2}{f_{\phi}^2} \, F_{\mu
u} F^{\mu
u}$$

Projected constraints on the quadratic scalar—photon coupling

$$\Lambda \equiv f_{\phi}/|C_{\gamma}|^{1/2} \qquad |C_{\gamma}| \approx 3 \times 10^{-5}$$

Scalar - Photon Quadratic Couplings Ultralight Bosons

- Axions/ALPs: Nonperturbative QCD or explicit UV effects induce
- QCD axion: loop calculations yield $|C_{\gamma}| \sim 3 imes 10^{-5}$ (UV dependent)
- Generic Scalar Particles: With Z2 symmetry.
- Quadratic Coupling Effect:
 - Operator $rac{C_\gamma}{4} rac{\phi^2}{f_\phi^2} F_{\mu\nu} F^{\mu\nu}$ modifies the lagrangian effectively $-rac{1}{4} \Big[1 rac{C_\gamma \, \phi^2}{f_\phi^2} \Big] F_{\mu\nu} F^{\mu\nu}$
 - Fine structure constant $lpha_{ ext{eff}}pprox lpha \left(1+rac{C_{\gamma}\,\phi^2}{f_{\phi}^2}
 ight)$

S-Star Spectroscopy Summary

An exposure is around 10 mins.

$$rac{\delta lpha_{
m EM}}{lpha_{
m EM}} \simeq C_{\gamma} rac{\phi^2}{f_{\phi}^2}$$

- Modulation at Periastron
- Spectral line shift:

$$rac{\delta \lambda_j}{\lambda_j} pprox -k_{lpha,j} rac{\delta lpha_{
m EM}}{lpha_{
m EM}} pprox rac{\delta v}{c}$$

FIG. 1: An example of the normalized axion/scalar cloud density, $\phi_0/\phi_0^{\rm max}$, for $\alpha_G=0.03$ on the xy-plane (left) and xz-plane (right) in the BH frame, where the BH spin axis is aligned with the +z direction. The projected orbit of the S2 star is also shown on both planes. The transformation of the S2 orbit into the BH frame adopts fiducial values of $i_{\rm BH}=155^{\circ}$ and $\Omega_{\rm BH}=177^{\circ}$ [66].

^{*}The logic to the Soliton Core DM is the same

