CNRS Helmholtz Dark Matter Lab (DMLab)

Thomas Schoerner (DESY) and Dirk Zerwas (DMLab and IJCLab)

PPPS April 8, 2024

Scientific Topics of DMLab

Organised around the central theme dark matter

Historical salespitch

IRL tasks:

- develop new ideas
- across topic boundaries
- glued by dark matter

Formally

- long term visits to DESY, KIT and GSI (sabbaticals/expatriation=ch ange of lab, 1y minimum)
- working visits (typically 1-2 weeks)
- workshops broad and narrow
- common work
- try for common funds

The DMLab Projects

Projects

Projects:

 living system: starting/merging/ending

2024

- Annual workshop Paris Oct 17-18
- working visits to:
 - KIT
 - GSI
 - DESY
- Common funds:
 - ANR-DFG projects submitted
 - success CALO5D

Торіс	Project	PI France	PI Germany	
Direct Searches	Darwin	Julien Masbou (Subatech)	Klaus Eitel (KIT)	
	MadMax	Fabrice Hubaut (CPPM)	Axel Lindner (DESY)	
GW and MM Astroparticles				
Accelerators	Laser-plasma acceleration of Electrons	Nicolas Delerue (IJCLab)	TBN	
	Laser-plasma acceleration of Hadrons	Medhi Tarisien (LP2i)	Vincent Bagnoud (GSI)	
Computing and ML	?Precision and ML?	David Rousseau (IJCLab)	Margarete Mühlleitner (KIT)	
	High Precision for Dark Matter	Fawzi Boudjema (LAPTH)	Peter Marquard (DESY)	
Particle Detectors	Tracking Detectors	Marc Winter (IJCLab)	Ingrid-Maria Gregor (DESY)	
	CBM-MVD	Auguste Besson (IPHC)	Michael Deveaux (GSI)	
	Calorimeters	Roman Poeschl (JJCLab)	Katja Krueger (DESY)	
	Germanium Detectors	Gilbert Duchene (IPHC)	Juergen Gerl (GSI)	
Theory	Dark Matter, Gravity, Cosmology	Adam Falkowski (IJCLab)	Geraldine Servant (DESY)	
	Dark Photons	Juergen Brunner (CPPM)	Peter Marquard (DESY)	
	DM Gravity Cosmology	Daniele Steer (APC)	Thomas Konstandin (DESY)	
	Probing Strongly Interacting BSM	Giacomo Cacciapaglia (IP2I)	Christophe Grojean (DESY)	
	Strangeness in Nuclear Matter	Joerg Aichelin (Subatech)	Elena Bratkovskaya (GSI)	
		Luc Darme (IP2I)	Felix Kahlhöfer	

MADMAX

CPPM Marseille, DESY, UHH

↑↑↑↑↑↑↑↑↑↑↑↑↑↑

Axions:

• solution to strong CP problem in QCD

Pls: Fabrice Hubaut and Axel Lindner

- Postulate as CDM candidate
- needs masses of ~30µeV
- WISP candidate

Axion detection

- Magnetized Disc and Mirror Axion experiment (MADMAX)
- Axion $\rightarrow \pi \rightarrow \gamma + \gamma$
- Primakov effect: magnetic field = γ , Axion+B-field $\rightarrow \gamma$
- deBroglie wavelength: ~m
- coherent wave at experiment scale
- E-field oscillations discontinuous at surface
- Discs and mirror
- Resonance detection

French contribution:

- precise positioning of discs
- visiting thesis student

Thermal Noise

Frequency

Receiver

Pls: Roman Poeschl and Katja Krueger CALICE: Highly Granular Calorimetry for a Higgs factory

IJCLab, DESY, KIT, LLR and Valencia

Goals:

- Synchronous running
- Exchange on interfaces

France

Germany

SiW ECAL

Breaking down the structure

Structure

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- scalable to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm2, 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

Calorimetry

Laser Und Xfel Experiment – QED in extreme fields

CALO5D:

- Use of ps timing (not the same as in LHC)
- integration in PFlow
- Application in Higgs physics
- Derive consequences on CALO design:
 - 1 precise measurement
 - N less precise measurements
 - power consumption (PA) and its consequences
 - benefit of gain

Lohengrin at ELSA in Bonn?

Discussions with Matthias Hamer and Klaus Desch

SUSPECT3 and SUSYHIT

KIT, L2C, LUPM

Introduction

A brief history:

- 1997 GDR Supersymmetry (Pierre Binetruy)
 - Working group MSSM
- 1997-2002 Definition of phenomenological MSSM (pMSSM)
 - sfermions: 1st and 2nd generation universality
 - No new sources of FCNC and CP violation
- 1999 Publication MSSM report: <u>arXiv:hep-ph/9901246</u> (406 citations)
- 2002 Publication of Spectrum Calculator SuSpect: <u>Comput.Phys.Commun.176:426-455,2007</u>
 - Abdelhak Djouadi, Jean-Loic Kneur, Gilbert Moultaka
 - pMSSM (of the MSSM WG +3 parameters), mSUGRA, mGMSB,....
- 2003 Susy Les Houches Accord (SLHA): <u>JHEP 0407:036,2004</u>
 - Interoperability of Spectrum, Decay and Cross section calculators
- 2012 Discovery a R=+1 particle: h
- 2013 Relic density MSSM with SuSpect2: <u>Phys. Rev. D 89, 055017 (2014)</u>
- 2013 Start on major rewrite in C++ (SuSpect3)
- 2015 Relic density NMSSM with SFitter: Phys. Rev. D 93, 015011 (2016)

Calculating a SUSY Spectrum

Not a one shot effort: iterations

Boundary conditions:

- High scale: SUSY breaking masses
- EWSB scale: μ, m²A(EWSB)
- Z scale: tanβ

Numerical solution of coupled RGE:

• High Scale to Low Scale in N steps

Ensure EWSB

• Iteration at EWSB scale

Radiative corrections EWSB scale:

- Higgs Potential
- Higgs and SUSY running masses to pole masses

Radiative corrections Z scale:

• Corrections to SM couplings (yukawa, W, Z

Major rewrite C++

From Fortran to C++

C++ Inheritance: Models and EWSB

Models:

- Base for initialization
- Generic bottom up running
- Generic models as function of the number of scales (up to 5)
- Generic models implement the algorithm:
 - RGE running
 - Calculating rad corrs at the right scale
 - Calculating pole masses
- Specific models implement boundary conditions (set the SUSY breaking parameters)
- Minimal models inherit from larger models of the same type

Examples:

- Base \rightarrow 2scales \rightarrow LowScaleMSSM
- Base \rightarrow 4scales \rightarrow GMSB \rightarrow mGMSB
- Base \rightarrow 4scales \rightarrow AMSB \rightarrow mAMSB

•

EWSB

- Base for initialization
- → 3 classes EWSBclassic → Base
 - Algorithm specific part
 - $m^2H_u m^2H_d$
 - μ, mA²(EWSB) (BC at 3 scales)
 - μ, mA
- 1 class EWSBmh > Base
- mh
- EWSBclassic+EWSBmh
 - Alg developed for 1 EWSB variant, worked for all 3

NEW

• Difficulty: diamond inheritance (virtual solved the problem)

Higgs mass prediction or input parameter?

Inversion problem: trilinear coupling from Higgs mass

FixedPoint problem:

$$C_{FP}(A_t) = -\frac{1}{C_3} [C_2 A_t^2 + C_1 A_t + C_0 + (R_2 A_t^2 + R_1 A_t + R_0) \sqrt{a_s A_t^2 + b_s A_t + c_s}],$$

Eur. Phys. J. C (2022) 82:657

Inversion works: from $m_h(A_t)$ to $A_t(m_h)$

SUSYHIT2

From the Sparticle to the decay: SUSYHit upgrade in the works

Availability:

- v3.1.1
- http://suspect.in2p3.fr
- wget http://suspect.in2p3.fr/tar/suspect3.tar.gz
- tar xvfz suspect3.tar.gz
- ./configure
- make
- suspect3 -d examples/mSUGRA.in

SUSY-HIT1

- 100% Fortran
- Input files: SLHA*, susyhit.in, hdecay.in
- Communication between suspect2 and SDECAY/HDECAY: SLHA spectrum file

SUSY-HIT2:

- Upgrade to hdecay v6.61
- Move to SuSpect3 (C++)
- Communication SuSpect3 SDECAY/HDECAY in memory (more efficient for large parameter scans)
- C++ calling Fortran

C++ inheritage:

- Object SLHA4suspect: SLHA memory implementation of SLHA (limited to BLOCKS)
- Object SLHA4susyhit: inherits from SLHA4suspect and adds BLOCK DCINFO and DECAY of SLHA

Code maintance:

- Implemented CI tests for example files

Testing:

- Intrinsic comparisons: communication via file versus memory
- Change comparisons: ${\rm SUSYHIT}\, v1$ versus ${\rm SUSYHIT}\, v2$

Availability: Soon

* SLHA: SUSY Les Houches Accord format

#	PDG	W	idth						
DECAY	1000021	4.51015	5016E+00	# gluino d	decay	7S			
#	BR	NDA	ID1	ID2					
2	.11421275E-02	2	1000001	-1	#	BR(~g	->	~d_L	db)
2	.11421275E-02	2	-1000001	1	#	BR(~g	->	~d_L*	d)
5	.06628143E-02	2	2000001	-1	#	BR(~g	->	~d_R	db)
5	.06628143E-02	2	-2000001	1	#	BR(~g	->	~d R*	d)
2	.73930365E-02	2	1000002	-2	#	BR(~g	->	~u L	ub)
2	.73930365E-02	2	-1000002	2	#	BR(~g	->	~u_L*	u)
5	.02331604E-02	2	2000002	-2	#	BR(~g	->	~u_R	ub)
5	.02331604E-02	2	-2000002	2	#	BR(~g	->	~u R*	u)
2	.11421275E-02	2	1000003	-3	#	BR(~g	->	~s L	sb)
2	.11421275E-02	2	-1000003	3	#	BR(~g	->	~s L*	S)
5	.06628143E-02	2	2000003	-3	#	BR(~g	->	~s_R	sb)
5	.06628143E-02	2	-2000003	3	#	BR(~g	->	~s R*	S)
2	.73930365E-02	2	1000004	-4	#	BR(~g	->	~c_L	cb)

Dark Matter, Gravity and Cosmology

Project in French/German collaboration:

In preparation / preliminary

Towards gravitational waves from strong phase transitions with the Higgsless simulations

Chiara Caprini,^{a,b} Ryusuke Jinno,^c Thomas Konstandin,^d Alberto Roper Pol,^a Henrique Rubira,^c Isak Stomberg^d

We use a new hydrodynamic simulation scheme to study GW power spectra generated to during a first-order phase transition. We provide condensed information on the spectra as function of the wall velocity, latent heat, PT duration ...

Project: Precision constraints on strongly interacting dark particles

Contraction of the second

- It is conceivable that dark sectors particles with only strong interactions and no
 - They would contribute to the socalled Z parameter (analogue of electroweak S,T parameters) corresponding to a specific

dimension-6 operator in SMEFT

electroweak interactions exist

- This operators is equivalent to a linear combination of 4-quark operators in the Warsaw basis
- Goal: map out precise constraints on the Z parameter from electroweak precision measurements at LEP

Pls:

Geraldine Servant and Adam Falkowski Thomas Konstandin and Daniele Steer Christophe Grojean and Giacomo Cacciapaglia

Project: Gravitational waves from primordial black holes

Project: Gravitational waves in modified gravity

Panagiotis Marinellis <-> Massimiliano Riva

- It's the golden age of gravitational wave astronomy
 - On-shell amplitude techniques have pushed forward precision calculations of waveforms emitted in black hole/neutron star collisions, in GR and EFT extension thereof
- Cristofoli, Gorea, Kosever & DOC Less explored are the application in scalar-tensor theories where gravity is coupled to a cosmologically light scalar
 - Using on-shell amplitude techniques simplifies calculation of both gravitational waves and scalar waves for Schwarzshild and Kerr black holes

DMLab project Mathias Pierre and Simon Cléry

- Large perturbations of curvature can be generated in some models of inflation, studied to generate Primordial Black Holes (PBH)
- Scalar (curvature) perturbations can source second order Gravitational Waves (GWs) spectrum

 $h_{ij}'' + 2\mathcal{H}h_{ij}' - \partial_k \partial^k h_{ij} = \mathcal{P}^{ab}_{\ ij} \left\{ T_{ab} \right\} \approx \mathcal{P}^{ab}_{\ ij} \left\{ \partial_a \delta \varphi \partial_b \delta \varphi \right\} \quad \Rightarrow \quad \mathcal{P}_h \propto \mathcal{P}^2_{\delta \varphi} \quad \text{with} \quad \mathcal{P}_{\delta \varphi} \sim \mathcal{P}_{\mathcal{R}} \quad (\text{curvature spectrum})$

 \square Look at the production of GWs induced by large perturbations of curvatures generated during inflation, related to the formation of PBH

 $\hfill\square$ Study the effect of Non-Gaussianities and the consequences of non-linear dynamics for the GWs spectrum and its anisotropy

Outlook

- Can SILH be systematically extended to include DM?
- Systematic study of baryo-genesis, DM-genesis and GW production.
- Exotic phenomenology of composite states: exotic decays, LLP, light composite scalars...
- Synergy between current and future experiments.

Institutions

Governance

- Directorate (Director and CoDirector)
 - Dirk Zerwas (CNRS) and Thomas Schoerner (DESY)
- Steering Committee
- Scientific Projects Board
- International Advisory Committee
- <u>Website</u>
- Mailing list dmlab-general:
 - contact Thomas or Dirk
 - or mail to: <u>sympa@desy.de</u>
 - subject: subscribe dmlab-general Firstname Name

Name	Institution	Function
Reynald Pain / Berrie Giebels	IN2P3	Director
Patrice Verdier (co-chair)	IN2P3	
Vincent Poireau	IN2P3	
Laurent Vacavant	IN2P3	
Beate Heinemann	DESY	Director of particle physics
Hans Ströher (co-chair)	FZ Jülich	Director of IKP2
Yvonne Leifels	GSI	Deputy research director
Marc Weber	KIT	Head of division V

DMLAB

Formal Information

DMLab creation

- created formally on Jan 1, 2023 (dictionary need: French/German lab/institute, IN2P3(institut)/faculty or department)
- MoU last signature May 17, 2023 (evidence for new physics :)

Starting up:

- Direct searches
- Detector development
- Theory and Phenomenology
- Machine Learning
- Advanced Accelerator concepts (plasma)
- Astroparticles and Gravitational Waves

DMLab future:

• Open lab: pitch your idea to Thomas and Dirk