Performance of the Tracker End Caps in the Slice Test (February - July 2007)

Erik Butz, Universität Hamburg

for the TEC-Team

FSP-CMS Meeting, Zeuthen

26.9. - 28.9 2007

- Introduction
- The 'Slice'
- Commissioning
 - Gain Scan/Timing/Pedestal
- Temperature Evolution of Defects
- Noise Stability with Temperature
- Summary and Outlook

Beginning of the Slice Test

• Both TECs were inserted into the Tracker Support Tube (TST)

on 28.2 (TEC+)

ΞŇ

and 21.3 (TEC-)

respectively

 \rightarrow Strip Tracker is completed

Goals of the Slice Test

- Operate a large 'slice' of the tracker using
 - 'Detector Control System(DCS)' (to control low and high voltage and to monitor voltages, leakage currents, temperatures and rel. humidity) and
 - 'Detector Safety System' implementing software and hardware interlocks to ensure safe state of the detector at all times.
- Stable data taking with all subdetectors
 - Common Commissioning of all Subdetectors
 - * Determine possible interference between subdetectors (crosstalk)
 - * Measure at different temperatures, determine thermal properties of the tracker
 - Record cosmic muons with all subdetectors
 - Establish and test the read-out and reconstruction chain (transfer data to Tier1 center and run reconstruction chain, etc...)

СŇ

Total:>2100 Modules, ${\sim}$ 25 m^2 of silicon

Slice Test: Schedule

Since Beginning of March: TIB/TOB/TEC read out together at room temperatur (chiller at $+15^{\circ}$ C)

May 25th: Lowering chiller temperature to +10 $^{\circ}\ C$

June 5th: Lowering chiller temperatur to -0.5 $^\circ~C$

June 15th: Lowering chiller temperatur to -10 $^\circ$ C

June 25th: Lowering chiller temperatur to -15° C(Reduced Slice)

Juli 1st: Warming up to room temperature (Chiller +15 $^{\circ}$ C)

Erik Butz, Universität Hamburg

5 Steps in temperature, time at each step to check system and to take meaningful amount of cosmics (cosmics:see talk by G. Kaussen)

Commissioning the Tracker – Getting Ready for Data

several steps neccessary:

- Detect all connected modules
- Adjust laser amplification:
 - Strip tracker is read-out in analog mode \rightarrow Information about signal height is available
 - Electrical signal is converted to optical signal
 - Laser has four amplification settings
 - Goal: make best use of dynamical range
- Ajust timing
 - Account for differences in cable length etc...
- Determine pedestal and noise (\rightarrow 2 slides)

conversion from ADC to Electrons:

```
Tick at input \stackrel{\circ}{=} 8 MIP signal (2 × 10<sup>5</sup>e^{-})
noise<sub>e</sub>- = \frac{2 \times 10^5}{\text{Tick Height(output)}} \cdot \text{noise}_{\text{ADC}}
```

UHI L

Distribution of Laser Gain Settings

UHI İİİ

Noise of a single Petal – Sector 2/ Back Petal Disc 1

СŇ

UH

TEC+ Noise: Summary for both sectors during the slice test

Ĥ

Difference

TEC+ Noise: Before and after insertion into the Tracker Support Tube

Sector 2 'Cold Test

Defects/Troubles/Issues

- $\bullet \sim 0.7\%$ faulty channels in the two TEC sectors
- Most of these are not randomly distributed, but are located on faulty APVs/Lasers/Modules

= counted as dead

1 = bad strips

3 = no run in dec. mode av.

• = more info to come

Defects/Troubles/Issues

2 = low noise

4 = not clear

13

	Defect	+15C	+10C	0C	-10C	-15C	
•	S3 BP4 2.1/0 bad tick (known before slice test)	×	×	Х	×	×	
	S3 BP1 5.3/0 low tick	×	×	×	×	×	
•	S3 BP5 7.3 two bad APVs (known since integration)	×	×	×	×	×	
•	S3 BP3 4.3 1 bad APV (known since integration)	1	1	2	2	2	
•	S2 FP3 1.4/0 laser with bad noise in dec. mode	×	3	4	×	n.c.	
••	S2 BP6 2.1/0 laser with bad noise in peak and dec. mode	×	×	×	_	—	
•	S2 FP7 5.4 PLL not working	_	×	×	×	n.c.	
	S2 FP8 3.2/2 laser with high noise	4	×	—	—	n.c.	
•	S2 BP2 7.5/0 low noise & pedestal	_	—	—	_	×	
	S3 BP4 7.2/2 very high base tick is saturated	_	_	—	_	×	
$\times =$	d = defect is present $d = defect$ is not present Above defects affect						

Above defects affect

2944 channels (\approx 0.6%)

some definitely lost, others may recover

UHH

Defect Evolution with Temperature: S2 BP6 Pos 2.1 (Peak Mode)

Runs from beginning and end of each temperature step

ľ.

Remaining Dead and Noisy Channels

СМ

Dead and Noisy Strips – TIB & TOB

ΤIΒ

TOB

L.Borrello in Tracker QA Meeting 31st July 07

http://indico.cern.ch/getFile.py/access?contribId=2&resId=5&materialId=slides&confId=19478

Noise of Sectors 2&3 combined $(-0.5^{\circ} C\& -10^{\circ} C)$

茁

Temperature Dependence of Scaled Noise

Noise of Sectors 2&3 combined (-0.5° C& -10° C) (Deconvolution)

Temperature Dependence of Scaled Noise (Deconvolution Mode)

UHI

Noise Difference for single channels (Peak Mode)

Noise decreases with temperature as expected and is stable in both magnitude and spread

for a given temperature

- Slice Test (successfully) finished
- TECs are integrated into the Strip Tracker and are performing well
- Noise is stable after insertion and temperature evolution is well behaved (more detailed studies forseen)
- No negative influence of subsystems on each other has been found
- Common commissioning of all subdetectors together was achieved
- Situation of defects within the TEC sectors is good and persistent defects are identified and monitored
- Tracker is ready for the next step of commissioning and data taking at Point 5