Analysis status: Search for a resonance in the invariant mass spectrum of the top-antitop-system

Deutsche Forschungsgemeinschaft

DFG

M. Erdmann, A. Hinzmann, J. Steggemann

CMS Germany Meeting DESY Zeuthen September 26th 2007

Topics

- *top pair production at the LHC*
- production of a resonance
- reconstruction of the topantitop-system
- kinematic fitting
- resolution of m(tf)
- conclusion & outlook

Top pair production at the LHC

- ~87% gluon fusion, ~13% quark-antiquark annihilation
- high increase of tt production cross section
- → extrapolated from *Tevatron* event selection, fraction of semileptonic ttbar events in 4-jet-events will rise from ~30% to ~90%

	W+Jets	ttbar	bbar+Jets	
1.96 TeV	~1200 pb	~ 6 pb	~ 2.4 x 10 ⁵	(Tevatron)
14 TeV	~7500 pb	~ 800 pb	~ 5 x 10 ⁵	(LHC)

- first main goal:
- investigate top pair production in detail (as backgrounds considerably law)

tail (as backgrounds considerably low)

Production of a "resonance"

• what?

→ an unknown particle of high mass decaying into a top-antitop-quark pair

• how?

 standard example: Z' with SM couplings, but high(er) mass

→ models: (MSSM) Higgs, Technicolor, Topcolor, Randall-Sundrum gravitons, ...

• why?

- > model independent
- → to first order, complementary to searches for supersymmetry
- high mass of top quark (~ scale of EWSB)
- indicates connection to new physics?

Jan Steggemann et al. CMS Germany Meeting DESY Zeuthen

properties:
 high mass
 no charge
 spin 0, 1, 2

The invariant mass of the tt system

- theory: solid variable (cf. D-LHC top workshop)
- production threshold: 2 x top mass
- Z' (mass of 4 TeV):

• Higgs (mass 375 GeV, decay width 20 GeV): (Bernreuther, Flesch, Haberl 1997)

Technical setup

samples

- → Spring '07 Alpgen samples
- used here: semileptonic ttbar + 0 jets

CMSSW & TQAF (Top Quark Analysis Framework)

- → CMSSW 1_3_6
- → TQAF_136_070908 (fixed object resolutions for kinematic fitting)

Physics eXtension Library (PXL)

- → successor of the PAX toolkit
- supplies fast hypothesis evaluation
- → well suited for analysis with high combinatorics \rightarrow top physics

Event selection

- generated ttbarevents (no pile-up) with one muon (semileptonic decay)
- **4 Jets** with transverse momentum > 30 GeV, $\eta < 2.4$
- Muon with transverse momentum > 20 GeV, $\eta < 2.4$
- 30 GeV cut 0.5= 4 jets 0.45matching quality 0.40.350.30.25= 4 jets 0.20.1 0.2 0.3 0.4 0.5 0.6 0.7 O. selection efficiency

 missing tranverse energy > 10 GeV

Jan Steggemann et al. CMS Germany Meeting DESY Zeuthen *no* b-tag requirement

Matching reconstructed objects to partons

Reconstruction of the top-antitop-system

4-Vector sum

simple and robust

• needs identification of top quark decay daughters (as opposed to jets from ISR, underlying event, additional collisions)

- resolution depends on:
- how often one includes objects not from top quark decay
 Jet Energy Scale

Kinematic Fitting

- use additional information of the event
- can improve resolution
- well-suited at low m(ttbar)
- need assignment of finalstate-objects to partons
- might be less robust at high m(ttbar) ($\rightarrow D0 \text{ studies}$)

 focus on kinematic fitting in the bulk region

Kinematic Fitting

- **extend knowledge** of observed event using information from an event hypothesis (*parton picture*)
- change four-vectors of reconstructed particles to comply with kinematic constraints
- need event hypothesis
 - → 24 hypotheses in 4-jet-events (<24 if kinematic fit finds unambiguous neutrino pz solution)</p>
- find solution that minimally alters four-vectors:
 need resolutions (covariance matrices) for all final state objects
- → construct & minimise χ^2 using Lagrangian multipliers

10

Constraints for Kinematic Fitting

- both *W* masses must equal
 80.4 GeV
- both **top quark masses** must equal 175 GeV (*MC*)
- results in an over-constrained system
- use the "EMom" parametrisation

The invariant mass distribution of the top-antitop-system [m(ttbar)]

Resolution of m(ttbar) with and without a kinematic fit

Quality of the kinematic fit

compare:

- generator-matched solution
- solution with minimum chi2
- all other solutions

 → minimum χ² correspondance to generatormatched solution >~20%

→ does lowest χ² correspond to highest resolution?

14

Jan Steggemann et al. CMS Germany Meeting DESY Zeuthen **RNTHAACHEN** UNIVERSITY

Resolution of m(tt)

compare:

- $\sigma(\Delta m(ttbar))$ • generator-matched solution ~ 15 GeV
- solution with minimum chi2 \sim 25 GeV

~ 90 GeV

other solutions

→ generatormatched solution has **best** resolution, minimum χ^2 good

finding correct final-state-objectparton-assignment will improve resolution

15

Conclusion & Outlook

- at present, $\Delta m(t\bar{t})$ of **25 GeV** with **kinematic fitting**, **15 GeV** possible (ttbar + 0 jets sample)
- analysis part of a CMS 2007 top paper (differential distributions)
 - MVA tools studied to resolve ambiguities in jet-parton-match: *slight improvement compared to* χ^2 *only*

next steps:

- study inclusion/rejection of *intrinsic* background (wrong jets)
- study physics backgrounds

backup...

17

Event selection efficiency

18

Event selection efficiency

Number of jets for different jet pt cuts

20

Eta and pt of highest pt jet not from ttbar decay

jet from ttbar decay with 4th highest pt

highest pt jet not from ttbar decay

21

