
GOOD CODING
PRACTICES

Thomas Madlener

FH Sustainable Computing Workshop

Oct 08, 2024

MENU FOR TODAY
CPU and memory basics for performance
Sustainability aspects (including human resources)
Avoiding common performance pitfalls in C++
Some exercises (and food for thought)

WHAT NOT TO EXPECT
Introduction to c++ / python from scratch

See for that
GPU / heterogeneous resources
In depth discussion of leveraging CPU features
Pro�ling
“Proper” benchmarking

the HSF Training Courses

https://hepsoftwarefoundation.org/training/center.html

DEVELOPMENT OF CPUS

PROCESSOR-MEMORY GAP

A MODERN CPU IS A COMPLICATED BEAST

FEATURES OF MODERN CPUS
Multithreading
Hyperthreading
Caching on multiple levels
Instruction pipelining
Speculative execution / branch prediction
Vectorization

MEMORY IS KING

SUSTAINABILITY & PERFORMANCE
A stalled CPU still consumers power!

Infrastructure as well
FLOPS / Watt numbers assume full CPU utilization

(100 % only achievable in theoretical scenarios)
Better performance fewer resources for the same
work

→

PRACTICAL ADVICE
Make data contiguous and cache friendly

Avoid pointers & virtual functions where possible
Make data requests cache-friendly and predictable
Design with data �ow in mind

“Natural” in many cases in HEP
Write simple code

Easier to maintain and understand
Compiler might have an easier job optimizing it

WHAT DOES CACHE FRIENDLY EVEN MEAN?
Data that is accessed together is close by in memory

CPU can “guess” which data are needed next
(Pre)fetches them into caches to make them
quickly available

// Actual Data will live scattered throughout memory

std::vector<Data*> ptrVec;

// Access might be slow due to "pointer chasing"

// All Data will be stored contiguously in memory

std::vector<Data> valueVec;

// Access likely very quick since the CPU knows where the next

// element lives in memory

CONSIDERATIONS FOR SOFTWARE DESIGN
Necessary efforts depend on several factors
(Expected) lifetime of the code you are writing?
(Potential) users other than you?

Keep in mind future you!
Software changes constantly

Divide into independent pieces when possible
No “spooky action at a distance”

Take time to refactor if new requirements come up
(Automated) testing is part of the process
Documentation is part of the process

BUILDING BLOCKS FOR SOFTWARE DESIGN
Functions

Avoid code repetition
Reduce variable scope / improve readability
Isolation of dependencies

class / struct
Group data together
Ensure preservation of invariants

Naming
Good naming reduces need for comments

GENERAL CONSIDERATIONS
No mutable global state!
Immutable global variables / con�guration OK

Keep as small as possible
Avoid manual memory management
std::unique_ptr is a thing

Use containers over C-style arrays
std::vector is almost always the right choice
Store values not pointers

Functions, functions, functions, …

CONSIDERATIONS FOR FUNCTIONS
Split large functions into smaller ones
Write “pure” functions

Easier to test
No side-effects to keep in mind
Pass arguments by const& by default

Keep number of arguments low
Group input arguments into classes if necessary

Try to avoid in-out parameters
Return multiple values
Group return value into a class

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

Common pattern
Halfway there to functions

Even naming is solved already

def complicated_function(args):

 """This long function has all the lines"""

 # step 1: read data

 # ... very involved procedure to read data ...

 # step 2: filter data

 # ... do some stuff to filter out some things ...

 # extract result 1

 # ... complicated procedure to get some result ...

 # extract another result

 # ... entirely independent procedure for another result ...

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

Common pattern
Halfway there to functions

Even naming is solved already (to a certain point)
There are even tools to help with this!

def complicated_function(args):

 """This long function has all the things but not the lines""

 data = read_data(args)

 filtered_data = filter_data(data)

 result_1 = get_result_1(filtered_data)

 indep_res = get_independent_result(filtered_data)

PASSING FUNCTION ARGUMENTS IN C++
// Pass by value (do this for small objects)

// --> Copy the inputs

// --> No changes visible outside (automatically threadsafe)

void process_1(vector<Data> inputs);

// Pass by reference (this should almost never be necessary!)

// --> No copy

// --> Function CAN mutate inputs (NOT threadsafe!)

void process_2(vector<Data>& inputs);

// Pass by const reference (do this for large objects)

// --> No copy

// --> Function CANNOT mutate inputs (threadsafe)

void process_2(const vector<Data>& inputs);

AVOID IN-OUT PARAMETERS

Complicates const-correctness
“Noisy”

bool process(vector<Data> const& inputs,

 vector<Data>& output,

 double& efficiency);

// ============= Usage ============

vector<Data> output{};

double procEff;

if (process(inputs, output, procEff)) {

 // do something

}

AVOID IN-OUT PARAMETERS

Use structured bindings
Introduce a simple struct or class if applicable
Consider std::optional

std::tuple<bool, vector<Data>, double>

process(vector<Data> const& inputs);

const auto& [success, output, procEff] = process(inputs);

if (success) {

 // do something

}

CONST CORRECTNESS IN C++
C++ has the const keyword

Mark variables, function parameters and member
functions as immutable

Allows compiler to more aggressively optimize
Communicates intent to users / developers
Since C++11 a const member function is assumed
to be thread-safe!
Unfortunately not the default in C++

BASICS OF TESTING
Different levels of tests
Small (pure) functions make writing unit tests easier
Write tests in parallel to other code
Also check “unhappy” paths
Every language has (unit) testing frameworks
Make tests quick to run
Run them as part of the development cycle

A bug that is caught by a test doesn’t need
debugging!

Automate running tests (CI)

FINAL THOUGHTS (1 / 2)
Use an editor that works with you not against you

Syntax highlighting, autocomplete, code browsing,
documentation, …
VS Code is a good starting point

ChatGPT (and friends) are great but not always right
Treat them as “better autocomplete” and check
what they produce!

FINAL THOUGHTS (2 / 2)
Error messages can be useful if read completely
Enable compiler warnings and treat them as errors
by default
-Werror for enforcement by the compiler

Jupyter notebooks are great for prototyping
Not so much for storing (and versioning!) your
code

RESOURCES & USEFUL LINKS
 - material for various languages

and tools
 - reference page for c++ & STL

 - “compiler explorer”, online c++ compiler

HSF Training website

cppreference.com
godbolt.org
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelin

https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

EXERCISES
Pick and choose
Solutions / inspiration included
c++ exercises

Easy performance gains / pitfalls, writing const
correct code
Refactoring an existing analysis

python exercises
Unit testing and �xing an existing function

EXERCISES REPOSITORIES

 (main exercises)

 (intro to pytest and unittesting
with python)

 (intro to unittesting with c++)

gitlab.desy.de/fh-sustainability-forum/sustainable-
coding-tutorial/

software-exercises

python-unittesting

cpp-unittesting

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

