600D CODING
PRACTICES

Thomas Madlener
FH Sustainable Computing Workshop
Oct 08, 2024

MENU FOR TODAY

e CPU and memory basics for performance

e Sustainability aspects (including human resources)
e Avoiding common performance pitfalls in C++

e Some exercises (and food for thought)

WHAT NOT T0 EXPECT

Introduction to c++ / python from scratch

= See the HSF Training Courses for that

GPU / heterogeneous resources

In depth discussion of leveraging CPU features
Profiling

“Proper” benchmarking

https://hepsoftwarefoundation.org/training/center.html

DEVELOPMENT OF CPUS

40 Years of Micrapracessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

Frequency (MHz)

Typical Power

(Watts)
Number of
:: | : } ,’gv Y RS Logical Cores
0 v : ' bl
‘IO _" "‘...’mm‘. ------------------------- —
i 1 i 1
1970 1980 1990 2000 2010 2020
Year

Qriginal dala up to the year 2010 collected and plotted by M. Horowilz, F. Labonte, O. Shacham, K. Clukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

PROCESSOR-MEMORY GAP

100,000

10,000

1,000

Processor-Memory
Performance Gap

Processor

100 |-

Performance

S . A s —

1980 1985 1990 1995 2000 2005 2010
Year

A MODERN CPU IS A COMPLICATED BEAST

Memory Management
Unit (MMU)

Control || CPU
Unit Clock

L2 and L3
Cache L1d Cache

L1i Cache

[A Register |[B Register]|

Instruction
Pointer

Instruction
Register

Arithmetic and
Logic Unit
(ALU)

FEATURES OF MODERN CPUS

e Multithreading

e Hyperthreading

e Caching on multiple levels

e |nstruction pipelining

e Speculative execution / branch prediction
e \ectorization

MEMORY IS KING

Hardware Evolution and Heterogeneity

CERN
School of Computing

|64 B/1c, 4 c latency |

Approximate memory
Latencies on Intel
Haswell CPUs

64 B/1c, 12 c latency |

64 B/1c for all cores
~36 ¢ latency

L1l L1D
(32 KB) (32 KB)
L2
(256 KB)
Shared L3
(8192 KB)

¢ =cycle

40

Andrzej Nowak

~24 B/c for all cores
200-450 c latency

Adapted from S. Jarp

SUSTAINABILITY & PERFORMANCE

e Astalled CPU still consumers power!
= |nfrastructure as well

e FLOPS /Watt numbers assume full CPU utilization
= (100 % only achievable in theoretical scenarios)

e Better performance — fewer resources for the same
work

PRACTICAL ADVICE

Make data contiguous and cache friendly

= Avoid pointers & virtual functions where possible
Make data requests cache-friendly and predictable
Design with data flow in mind

= “Natural” in many cases in HEP

Write simple code

= Easier to maintain and understand

= Compiler might have an easier job optimizing it

WHAT DOES LACHE FRIENDLYEVEN MEAN?

e Datathatis accessed together is close by in memory
s CPU can “guess” which data are needed next
= (Pre)fetches them into caches to make them
quickly available

CONSIDERATIONS FOR SOFTWARE DESIGN

e Necessary efforts depend on several factors
e (Expected) lifetime of the code you are writing?
o (Potential) users other than you?
= Keep in mind future you!
e Software changes constantly
= Divide into independent pieces when possible
= No “spooky action at a distance”
e Take time to refactor if new requirements come up
e (Automated) testing is part of the process
e Documentation is part of the process

BUILDING BLOCKS FOR SOFTWARE DESIGN

e Functions
= Avoid code repetition
= Reduce variable scope / improve readability
= |solation of dependencies
e class/struct
= Group data together
= Ensure preservation of invariants
e Naming
= Good naming reduces need for comments

GENERAL CONSIDERATIONS

No mutable global state!

Immutable global variables / configuration OK

= Keep as small as possible

Avoid manual memory management

= std::unique ptrisathing

Use containers over C-style arrays

m std: :vectorisalmost always the right choice
= Store values not pointers

Functions, functions, functions, ...

CONSIDERATIONS FOR FUNCTIONS

e Split large functions into smaller ones
e Write “pure” functions
= Fasiertotest
= No side-effects to keep in mind
= Pass arguments by const& by default
e Keep number of arguments low
= Group input arguments into classes if necessary
e Try to avoid in-out parameters
= Return multiple values
= Groupreturnvalueintoaclass

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

def complicated function(args) :

e Common pattern
e Halfway there to functions
= Even naming is solved already

SPLIT LARGE FUNCTIONS INTO SMALLER ONES

def complicated function (args):
data = read data (args)

filtered data = filter data(data)

result 1 = get result 1(filtered data)

indep res = get independent result(filtered data)

e Common pattern
e Halfway there to functions

= Even naming is solved already (to a certain point)
e There are even tools to help with this!

PASSING FUNCTION ARGUMENTS IN C++

volid process 1 (vector<Data> inputs);

vold process 2 (vector<Data>& inputs);

vold process 2 (const vector<Data>& inputs);

AVOID IN-OUT PARAMETERS

bool process (vector<Data> consté& inputs,
vector<Data>& output,
double& efficiency);

vector<Data> output{};
double procEff;

if (process (inputs, output, procEff)) {

}

e Complicates const-correctness
e “Noisy”

AVOID IN-OUT PARAMETERS

std: :tuple<bool, vector<Data>, double>
process (vector<Data> consté& inputs);

const auto& [success, output, procEff] = process (inputs);

1f (success) {

}

e Use structured bindings

e Introduce asimple struct or class if applicable
e Considerstd::optional

CONST CORRECTNESS IN C-++

e C++ hasthe const keyword

= Mark variables, function parameters and member
functions as immutable

e Allows compiler to more aggressively optimize

e Communicates intent to users / developers

e Since C++11 a const member function is assumed
to be thread-safe!

e Unfortunately not the defaultin C++

BASICS OF TESTING

e Different levels of tests
e Small (pure) functions make writing unit tests easier
e Write tests in parallel to other code
e Also check “unhappy” paths
e Everylanguage has (unit) testing frameworks
e Make tests quick to run
e Runthem as part of the development cycle
= A bug that is caught by a test doesn’t need
debugging!
e Automate running tests (Cl)

FINAL THOUGHTS (1/2)

e Use an editor that works with you not against you
= Syntax highlighting, autocomplete, code browsing,
documentation, ...
= VS Code is agood starting point
e ChatGPT (and friends) are great but not always right
= Treat them as “better autocomplete” and check
what they produce!

FINAL THOUGHTS (2 / 2)

e Error messages can be useful if read completely
e Enable compiler warnings and treat them as errors
by default
= -Werror for enforcement by the compiler
e Jupyter notebooks are great for prototyping
= Not so much for storing (and versioning!) your
code

RESOURCES & USEFUL LINKS

e HSF Training website - material for various languages
and tools

e cppreference.com - reference page for c++ & STL

e godbolt.org - “compiler explorer”, online c++ compiler

e isocpp.github.io/CppCoreGuidelines/CppCoreGuideli

https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

EXERCISES

Pick and choose

Solutions / inspiration included

c++ exercises

= Fasy performance gains / pitfalls, writing const
correct code

s Refactoring an existing analysis

python exercises

= Unit testing and fixing an existing function

EXERCISES REPOSITORIES

gitlab.desy.de/fh-sustainability-forum/sustainable-
coding-tutorial/
o software-exercises (main exercises)

e python-unittesting (intro to pytest and unittesting
with python)

e cpp-unittesting (intro to unittesting with c++)

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

