Time-of-Flight Vision Transformer #1 > why vision? | x | y | Z | t | e | d | |-------|-------|-------|-------|-------|-------| | x_1 | y_1 | z_1 | t_1 | e_1 | d_1 | | x_2 | y_2 | z_2 | t_2 | e_2 | d_2 | | ij | | | | | | Convert to image | Image | Shower | | |-----------------|-----------------|--| | Height [pixels] | n hits | | | Width [pixels] | 1 | | | Channels [RGB] | 6 (x,y,z,t,e,d) | | Input to ViT # **Time-of-Flight Vision Transformer #2** #### 'Normal' Vision Transformer: #### **TOF Vision Transformer:** arXiv:2010.11929v2 ### **TOFViT Results** - > TOFViT beat the (improved) ILD benchmark - > TOFViT utilises 2 hits per layer - only used hits from the first10 layers - > smaller RMS90, less biased | Network | RMS90 | μ_{90} | |-----------|------------------|-----------------| | Improved | 20.94 ± 0.01 | 9.77 ± 0.02 | | benchmark | 0.10 | 0.20 | | TOFVIT | 17.09 ± 9.01 | 3.23 ± 0.02 | | | 0.10 | 0.20 | ## Benchmark vs. Improved Benchmark Benchmark Algorithm: Improved Benchmark Algorithm: *for Gaussians: RMS90 = $0.789 \cdot RMS$ ## A Closer Look at the Benchmark Algorithm