Time-of-Flight Vision Transformer #1

> why vision?

x	y	Z	t	e	d
x_1	y_1	z_1	t_1	e_1	d_1
x_2	y_2	z_2	t_2	e_2	d_2
ij					

Convert to image

Image	Shower	
Height [pixels]	n hits	
Width [pixels]	1	
Channels [RGB]	6 (x,y,z,t,e,d)	

Input to ViT

Time-of-Flight Vision Transformer #2

'Normal' Vision Transformer:

TOF Vision Transformer:

arXiv:2010.11929v2

TOFViT Results

- > TOFViT beat the (improved)
 ILD benchmark
- > TOFViT utilises 2 hits per layer
- only used hits from the first10 layers
- > smaller RMS90, less biased

Network	RMS90	μ_{90}
Improved	20.94 ± 0.01	9.77 ± 0.02
benchmark	0.10	0.20
TOFVIT	17.09 ± 9.01	3.23 ± 0.02
	0.10	0.20

Benchmark vs. Improved Benchmark

Benchmark Algorithm:

Improved Benchmark Algorithm:

*for Gaussians: RMS90 = $0.789 \cdot RMS$

A Closer Look at the Benchmark Algorithm

