Measuring kinematic anisotropies with pulsar timing arrays

Whispers from the Dark Universe (2024), **DESY-Hamburg**

Based on Phys. Rev. D 110, 063526 and arxiv:2406.04957 with Marisol Cruz, **Gianmassimo Tasinato and Ivonne Zavala**

Ameek Malhotra

Contact: ameek.malhotra@swansea.ac.uk

PTA SGWB detection

- SGWB Anisotropy
- Kinematic dipole
- Current Limits and forecasts
- Summary

2

What is the origin of the PTA signal?

Origin of PTA signal

Supermassive BH mergers expected to produce amplitude $h_c \sim 10^{-15}$ and spectral index $\gamma = 13/3$ [Phinney (2001), Sesana et al. (2008)+]

The likely one

Origin of PTA signal

Or is it from the early universe?

NANOGrav 15 year analysis: Search for signals from new physics

Additional possibilities studied in [arXiv: 2306.16219, 2306.16227 + many more!]

Origin of PTA signal

Too early to tell...

- Additional SGWB properties important to figure out origin(s)

• Can SGWB anisotropies help? — currently data is consistent with isotropy

SMBHB Anisotropies

Estimates vary, but **SMBHB** anisotropies are expected to be large

[Mingarelli et al. 2013; Taylor & Gair 2013; Mingarelli et al. 2017), Sato-Polito & Kamionkowski (2023) + more]

Cosmological SGWB anisotropies

CMB observations indicate large scale inhomogeneity at the 10^{-5} level

In general, cosmological SGWB anisotropies are also expected to be small

See review by LISA CosWG (2022)

Kinematic dipole anisotropy

Largest anisotropy in the CMB is the kinematic dipole

Velocity $\beta = v/c = 1.23 \times 10^{-3}$ towards $(l, b) = (264^\circ, 48^\circ)$ in galactic coordinates

COBE dipole detection (1994)

SGWB Kinematic dipole

If SGWB is of early universe origin, then we can expect a kinematic dipole mirroring the CMB dipole

 $I(f, \hat{n}) = \overline{I}(f) \left[1 + (1 - n_I)\beta(\hat{n} \cdot \hat{v}) + \mathcal{O}(\beta^2) \right]$

$$n_I \equiv \frac{d \ln \bar{I}}{d \ln f}$$

[Cusin and Tasinato (2022)]

PTA response to kinematic dipole

Cross-correlation of timing residuals

$$\langle \delta t_p \, \delta t_q \rangle \propto \Gamma_{pq}^{(\text{HD})} I + \Gamma_{pq}^{(\text{dipole})} \beta (1 - n_I) I$$

$$\Gamma_{pq}^{\text{dipole}} = \left(\frac{1}{12} + \frac{y_{pq}}{2} + \frac{y_{pq}\ln y_{pq}}{2(1-y_{pq})}\right) \left[\hat{v}\cdot\hat{p} + \hat{v}\cdot\right]$$
$$y_{pq} \equiv \frac{1-\hat{p}\cdot\hat{q}}{2}$$

[Anholm et al. (2009), Mingarelli et al. (2013), Tasinato (2023)]

11

 $\hat{q}]$

Dipole tension

CMB and LSS estimates of β appear to be in tension, $\beta_{\rm LSS}\approx 2\beta_{\rm CMB}$

[See Peebles (2022) for a review]

COBE dipole

Analysis of NANOGrav data

We implement the kinematic dipole ORF in Enterprise¹ with $\hat{v} = \hat{v}_{CMB}$

Note: this assumes SGWB of cosmological origin!

1. <u>https://github.com/nanograv/enterprise</u>

What comes next?

Image: <u>GWplotter.com</u>

Forecasts: SKA era

Idealised scenario with $N \gg 100$ identical pulsars distributed uniformly We make several simplifying assumptions -> most optimistic estimate

[Keane et al. (2015), Janssen et al. (2015)]

Forecasts: SKA era

Weak signal results

 $\sim 30^{\circ}$ degree localisation of dipole direction

Challenging even with ~4000 pulsars

Forecasts: SKA era

Strong signal regime

Detection will be challenging even for futuristic experiments

See also Depta et al. (2024) for strong signal results

Circular polarisation

Cosmological sources e.g. GW from axion-gauge fields [Unal et al. 2023 + more] PTA blind to circular polarisation monopole — planar detector

$$\Gamma_{ab}^{V} = \beta \ (n_{V} - 1) \ G_{ab}^{(1)} V$$
$$G_{ab}^{(1)} = -\left(\frac{1}{3} + \frac{y_{ab} \ln y_{ab}}{4(1 - y_{ab})}\right) \ [\hat{v} \cdot (\hat{x}_{a} \times \hat{x}_{b})]$$

PTA response begins at dipole

Circular polarisation

Near maximal polarisation may be detected with SKA ($N_{\rm psr}\gtrsim 10^3$)

Degree of circular polarisation

$$\epsilon_V = \frac{V}{I}$$

Unconstrained by current data (again for cosmo SGWB)

AGWB circular polarisation

Astrophysical estimate
$$C_{\ell}^V \simeq C_{\ell}^I$$

[Dall'Armi et al. (2023), Sato-Polito and Kamionkowski (2023)]

$$\varepsilon_V = 1$$
 with $N_{\rm psr} = 150$

Anisotropy could help distinguish **SMBHB** vs cosmological scenarios

pulsar direction w.r.t dipole — challenging even with SKA

Additional information in circular polarisation for both cosmological and astrophysical SGWB

- Kinematic dipole the largest anisotropy for cosmological SGWB + dependence on

Contact: <u>ameek.malhotra@swansea.ac.uk</u>

