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Huge Success in Electroweak theory:

SU(2)L x U(1)Y à U(1)EM

Spontaneous Symmetry Breaking was the key

Group theory was the mathematics

Unification was the word

Keep going! 

G à SU(3)C x SU(2)L x U(1)Y 
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Lowest rank group SU(5) works, as does SO(10)

Fermions fit beautifully within complete GUT multiplets
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Result (teaser) see you at the poster!

Johannes Herms, Heidelberg Workshop, ’24

(With student I obtained similar ~10-2 result for chiral representations.)
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If experiment stopped in 1980, we’d all believe in GUTs.

But expt did not stop.

Desire to confirm it all by proton decay:

[Adamas university]
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Paul Langacker, Grand unified theories and proton decay 319 

The results for the p and n lifetime are given in table 4.3. ap and a,  are the coefficients in 

rp..(yr) = ap..Mx(GeV) 4. (4.42) 

The first three calculations presumably include all hadronic final states, while the last four include only 
the single meson states. Hence, these calculations include a factor of pp or p,, which are the fractions of 
two-body final states for p and n decay. For pp,. --- 1 there is a factor of ten discrepancy between the inclusive 
and first three exclusive calculations. This may be an indication that the multiparticle decays are important 
(i.e. pp,. < 1). Also, a small part of the difference is due to the large pion suppression assumed by Donoghue 
[4.51] and Golowich [4.53]. To add to the confusion, the third bag calculation of Din et al. [4.52] gives a 
result similar to the SU6-parton calculations. 

The major uncertainties in %, given the SU5 model and the value of Mx, are (a) a factor of =2 
uncertainty in 10(0)[2; (b) a factor =2 uncertainty from the treatment of quark masses and phase space 
[4.20,4.52]; (c) a factor of ~<2 from possible recoil suppression of the pionic modes; (d) a small 
uncertainty from the number of families, which affects the anomalous dimensions and the estimate of 
Mx. For fixed Mx, rp decreases by 20-30% for each additional family [4.45, 4.52]. Other uncertainties, 
such as the validity of the parton assumptions, the SU6 wave functions, the bag model, the fractions of 
two body decays, and the possibility of calculational errors, are best estimated from the order of 
magnitude spread of thg estimates in table 4.3. Finally, ~" could be increased by large mixing effects if 
one abandons the minimal Higgs structure (5's and 24's). 

From table 4.3, I conclude (for the SU5 model with F = 3 and the minimal Higgs structure) 

~-p(yr) = (2.4-38) x 10-29M~: 

r./rp ~ 1.1-1.5, 
(4.43) 

where Mx is in GeV 0"n/~'p is further discussed below). 
Combining this with 

Mx = 15 x 10~4A ~-g x (1.5) ±1 

A M----g(s GeV) = 0.4 × (1.5) ±1 (4.44) 

one has 

~'~) = (1.2-19) x 1032±°'7A-~s 

= (3.1--49)x 103°±14. (4.45) 

(4.45) can be written 

Tp (vr) ~--" 4.8 X 1032±l3A-~s 

= 1.2 X 10 (3t±2). (4.46) 

(4.46) differs slightly from the result of Ellis et al. [4.4] because I have renormalized the 10(0)I 2 used by 
Gavela et al. [4.47]. The relation (4.46) between ~-p and A ~ is shown in fig. 4.5. (4.46) can be combined 

From Langacker Phys. Rep. 1981:

Georgi-Glashow: 1030-31 years



8

By 1983 the IMB (Irvine-Michigan-Brookhaven) and 
KamiokandeNDE (K. nucleon decay expt) 
Saw nothing.

Lifetime > 1032 years or so.

[Present limit is τ(p-> πe) > 1.6 x 1034 years.]

Georgi 1983: “Shelly is depressed”
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“GUT Winter” 1983-1990.

Then LEP/SLC Z-pole precision experiments, ~1990.

Pixels
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Amaldi, de Boer, Fürstenau, March 1991 preprint
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Amaldi, de Boer, Fürstenau, March 1991 preprint



12

ar
X

iv
:h

ep
-p

h/
02

07
27

1v
2 

 1
0 

Ja
n 

20
03

Two-loop Renormalization Group Equations in the Standard Model

Mingxing Luo and Yong Xiao
Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, P R China

(July 2002)

Two-loop renormalization group equations in the standard
model are re-calculated. A new coefficient is found in the β-
function of the quartic coupling and a class of gauge invariants
are found to be absent in the β-functions of hadronic Yukawa
couplings. The two-loop β-function of the Higgs mass param-
eter is presented in complete form.

PACS number(s): 11.10.Hi, 12.10.Dm, 11.15.-q, 14.80.Bn

Analysis based upon renormalization group equations
(RGEs) plays an important role in the study of physics of
the standard model (SM) and beyond. Detailed analysis
of RGEs confirmed the behavior of asymptotic freedom in
QCD, and thus helped to establish a non-Abelian gauge
theory for the strong interaction [1]. The runnings of
coupling constants and mass parameters are crucial in
global analysis of high precision electroweak experiments
[2]. On the other hand, RGEs analysis extrapolated to
extremely high energy provides a possible test for physics
beyond the SM. For example, gauge couplings do not
unify within the SM. This gives extra evidence against
simple grand unification theories such as SU(5) with-
out supersymmetry, in addition to the non-observation of
proton decay. On the other hand, gauge couplings seem
to unify at a scale ∼ 2 × 1016 GeV in the minimal su-
persymmetric standard model, which can be interpreted
as an indirect evidence for supersymmetry as well as uni-
fication theories [3–5]. Comprehensive analysis can be
found in [6].

Computations of RGEs in gauge theories have been
performed for various models to different orders of per-
turbation. Persistent efforts yielded recently a four-loop
result of the β-function of the strong coupling constant
[7]. Two-loop RGEs of dimensionless couplings in a gen-
eral gauge theory as well as the specific case of the SM
had been calculated long ago in a series of classic pa-
pers by Machacek and Vaughn [8–10]. By introducing
a non-propagating gauge-singlet “dummy” scalar field,
two-loop RGEs of dimensional couplings can be readily
inferred from dimensionless results [11,12]. These were
used to derive the RGEs of supersymmetric theories a
decade later [11].

In this paper we re-calculate the two-loop RGEs in
the SM, in a combination of using the general results of
[8–10] and direct calculations from Feynman diagrams.
A new coefficient is found in the β-function of the quar-
tic coupling and a class of gauge invariants are found to
be absent in β-functions of hadronic Yukawa couplings.

We will also present the two-loop β-function of the Higgs
mass parameter in complete form, which provides a par-
tial but useful check on the calculation of the quartic
coupling. Whenever discrepancy with the literature ap-
pears, we carefully inspect relevant Feynman diagrams
to ensure consistency.

To fix notations, we define Yukawa couplings and the
Higgs potential in the SM to be

−Lint =
{

ēFLφ+l + d̄FDφ+q + ūHφ+cq + h.c.
}

+ m2φ+φ +
λ

2
(φ+φ)2, (1)

where three families of fermions are grouped together so
FL, FD, H are 3× 3 complex matrices, and φc ≡ iτ2φ∗.
For each coupling constant x in Eq.(1), we define a cor-
responding β-function

βx = µ
dx

dµ
=

1

16π2
β(1)

x +
1

(16π2)2
β(2)

x , (2)

where β(1)
x , β(2)

x denote the one-loop and two-loop contri-
butions, respectively. We use dimensional regularization
and the modified minimal subtraction scheme (MS) for

renormalization. The expressions of the β(1)
x ’s are quite

standard which can be easily reproduced. The evaluation

of β(2)
x ’s will be the object of this article.

Following the conventions of [8–10], we define the fol-
lowing combinations of Yukawa matrices for later conve-
nience

Y2(S) = Tr
[

3H+H + 3F+
DFD + F+

LFL

]

,

H(S) = Tr
[

3(H+H)2 + 3(F+
DFD)2 + (F+

LFL)2
]

,

Y4(S) =

(

17

20
g2
1 +

9

4
g2
2 + 8g2

3

)

Tr(H+H)

+

(

1

4
g2
1 +

9

4
g2
2 + 8g2

3

)

Tr(F+
DFD)

+
3

4

(

g2
1 + g2

2

)

Tr(F+
LFL),

χ4(S) =
9

4
Tr

[

3(H+H)2 + 3(F+
DFD)2 + (F+

LFL)2

−
1

3

{

H+H,F+
DFD

}

]

.

The complex Higgs doublet has to be decomposed into
real fields. Further complication arises since [8–10] as-
sumed implicitly that the fermion fields are real, while
usual Weyl fermions are complex. Caution should be
taken when Yukawa couplings and gauge representation

1

Luo, Xiao, “Two-loop RGEs in SM”, ‘03

Typical viewpoint on unification, 1990-2012
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Gauge Coupling Unification / GUTs regained life!

GUT theorists headed toward SUSY                                                     adobe
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49 STUDY OF CONSTRAINED MINIMAL SUPERSYMMETRY 6183

The procedure that we adopt essentially consists of
repeatedly running the RGE's between Q = mz and Q =
M~ until a self-consistent solution has been isolated.
In the first iteration for any given set of input param-

eters, an approximate SUSY spectrum is generated. The
six RGE's of the gauge and Yukawa couplings, are si-
multaneously run up first to the GUT scale using the
method of Runge-Kutta. We run the gauge couplings
above the Z scale in the SUSY-consistent dimensional
reduction (DR) scheme as opposed to the MS scheme
which we used below the Z scale, and so we impose the
matching condition for the two schemes at Q = mz [40].
(The net effect of the scheme change is less than 1'
however [10,40].) Running up, we define Mx as that
point at which ni(Mx) = n2(M~) = nx. We then set
o., (Mx ) = nx. All scalar masses are set equal to mo, all
gaugino masses to mzy2, and all A parameters to Ao.
The RGE's for all the 26 running parameters (the

gauge and Yukawa couplings, the p-parameter, and the
soft mass terms) are run back from Q = M~ down to
Q = mz. For the gauge couplings, two-loop RGE's with
one-loop thresholds are used throughout, while two-loop
RGE's without thresholds are used for the Yukawa cou-
plings. Only the one-loop RGE's are used for the SUSY
soft mass parameters. Along the way we decouple any
particle i in the spectrum from the gauge coupling RGE's
at the scale Q = m, (Q). As described earlier, thresh-
olds in the one-loop gauge coupling RGE's are used to
account for the effects of the decoupling of the various
sparticles at masses greater than mz. At Q = mz a
value for n, (mz) is found consistent with unification as-
sumptions, and the full one-loop effective scalar potential
is minimized in order to determine the values of /J, (mz)
and B(mz) that produce proper EWSB. On the next it-
eration when the entire set of parameters is again run up
from Q = mz to a newly determined Mx. , the parame-
ters p, and B will also run, providing their corresponding
values at the GUT scale.
This entire procedure is repeated several times, termi-

nating only after changes in the solutions to the RGE's
are small compared to the values themselves or to the
experimental errors, whichever are relevant. Each itera-
tion provides a more precise spectrum of sparticles, which
in turn provides more precise running of the gauge and
Yukawa couplings. We find that the whole procedure is
extremely stable, usually converging to a solution in just
a few iterations.
In Fig. 3 we give an example of the running of various

sparticle masses from the GUT scale down to the elec-
troweak scale. Notice that the mass of the Higgs boson
that couples to the top quark is driven imaginary (i.e.,
its mass squared is driven negative) at scales 1TeV,
signaling the onset of EWSB. This is shown in the plot as
the mass itself going "negative" for convenience of pre-
sentation.
When the program has isolated a solution we have as

our output all sparticle masses and mixings valid to one
loop, Higgs boson masses which include all third gen-
eration contributions to the one-loop radiative correc-
tions [63], a, (mz), nx, and Mx valid to two-loops, and
the GUT-scale parameters Bo and po.
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FIG. 3. The running of the sparticle masses from the GUT
scale to the electroweak scale, for a sample set of input pa-
rameters (see "Solution 3" in Table VIII later in this paper).
The bold lines are the three soft gaugino masses m-, M2 (la-
beled W), and Mi (labeled B) The lig.ht solid lines are the
squark (qr„qz, ti„tz) and slepton (IL„IR) soft masses, where
we ignore D-term contributions and the mixing of the stops
for this 6gure. Finally, the dashed lines represent the soft
Higgs boson masses, mi and mz [see Eq. (10)], labeled by Hz
and H„.The onset of EWSB is signaled by mq going neg-
ative, which is shown on the plot as m2 going negative for
convenience.

A. Limits from experimental searches

LEP experiments have placed lower limits on the
chargino mass of about 47 GeV, and on the charged slep-

VII. CONSTRAINTS
In applying the numerical procedure described in the

previous section we have required the gauge coupling to
unify, and &om the input values of n, Eq. (25), and
sin Oiv, Eq. (26), obtained a range of o., (mz) as a
function of independent parameters. We have also de-
manded proper EWSB yielding the experimentally mea-
sured value of mz. We have parametrized the many mass
parameters of the MSSM in the usual way, assuming
common gaugino and scalar masses and the A param-
eters, Eqs. (18), (19), and (20), as implied by minimal
SUGRA. Before we present our results in the next sec-
tion, we now list and brieHy elaborate on several other
constraints that we will impose on the output of our nu-
merical analysis. As we explained in Sec. III we do not
impose the condition mb ——m at the GUT scale because
the resulting bottom quark mass is likely to be very sensi-
tive to the threshold corrections at M~, which we cannot
include without selecting a specific GUT model. With-
out such corrections we obtain the values of mb about
20% above the current experimental range, except for
very large mq.

Kane et al., 1994
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GUT Expectations:

1) (important) Higgs boson will be found in perturbative regime       
(125 GeV < mh < 175 GeV), or within SUSY expectations                  
(100 GeV < mh < 140 GeV)

2) (hopeful) Proton decay may be found by future experiments

3) (naive) Supersymmetry will be found at LHC 
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Sigel/Forbes 

(a) Highly sensitive to 
GUT scale value. 

(b) Highly sensitive to 
GUT scale and 
susy partner scale

Important question: What is 
the range of values of MX 
and Msusy and still have 
unification?
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Proton-decay GUT-scale and IR-up G.C.U. scale not the same
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Gauge couplings measured at low scale

Exact unification tests require matching at high scale and RG flow to low 
scale across thresholds (e.g., superpartners)

MATCHING.   (                            )

and its extensions [23, 24].

Rather than pick a particular unification scale, we choose a scale µ⇤ = 1016 GeV at which

to evaluate various quantities. We select this scale since it is closely related to the constraints

on the masses of the vector bosons associated with proton decay. We know that at scales near

the unification scale, the IR gauge couplings gi(µ⇤) are related to the unification coupling

gU(µ⇤) by the following relation at one-loop [9, 10]:
✓

1

g2
i
(µ⇤)

◆

MS

=

✓
1

g2
U
(µ⇤)

◆

MS

�
✓
�i(µ⇤)

48⇡2

◆

MS

(2)

where �i(µ⇤) are the threshold corrections, computed in the MS scheme, to each gauge

coupling at the scale µ⇤. In general, when masses in an irreducible block are identical, �i(µ)

can be defined as [10]

(�i(µ))MS
= lVn

i
� 21 lVn

i
ln

MVn

µ
+ lSn

i
ln

MSn

µ
+ 8 lFn

i
ln

MFn

µ
(3)

where there is an implicit sum over the n di↵erent superheavy particles of a given type.

It should be understood that only physical scalars contribute. The lX
i

are the weighted

Dynkin indices relative to the SM gauge group i. This computation of �i(µ) is understood

to be accurate only in the region near the scale of unification. The threshold corrections can

therefore be determined in the GUT theory of choice.

In the IR, we may use Eq. (2) above and define the following relations that are indepen-

dent of the unification coupling gU(µ⇤)
✓
��ij(µ⇤)

48⇡2

◆

MS, DR

⌘
✓

1

g2
i
(µ⇤)

� 1

g2
j
(µ⇤)
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MS, DR

=

✓
�j(µ⇤)� �i(µ⇤)

48⇡2

◆

MS, DR

(4)

for i, j = 1 , 2, 3, i 6= j. Any two ��ij then specify all the threshold corrections up to a

constant factor. The subscripts MS and DR indicate that the threshold corrections and

gauge couplings need to be computed in the appropriate renormalization scheme depending

on whether one is dealing with a SUSY theory (DR) or not (MS).

From the IR, we only know how to compute gi(µ) and run up to some scale µ⇤. We may

then use Eq. (4) to calculate ��ij as a function of µ without requiring knowledge of the UV

theory. We may then assume that the UV has some GUT theory description, which would

allow us to compute the threshold corrections �i(µ⇤) and their di↵erence, ��ij(µ⇤) given the
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gauge couplings need to be computed in the appropriate renormalization scheme depending

on whether one is dealing with a SUSY theory (DR) or not (MS).

From the IR, we only know how to compute gi(µ) and run up to some scale µ⇤. We may

then use Eq. (4) to calculate ��ij as a function of µ without requiring knowledge of the UV

theory. We may then assume that the UV has some GUT theory description, which would

allow us to compute the threshold corrections �i(µ⇤) and their di↵erence, ��ij(µ⇤) given the

5

where

Relations that are independent of unified coupling:
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and its extensions [23, 24].

Rather than pick a particular unification scale, we choose a scale µ⇤ = 1016 GeV at which

to evaluate various quantities. We select this scale since it is closely related to the constraints

on the masses of the vector bosons associated with proton decay. We know that at scales near

the unification scale, the IR gauge couplings gi(µ⇤) are related to the unification coupling

gU(µ⇤) by the following relation at one-loop [9, 10]:
✓

1

g2
i
(µ⇤)

◆

MS

=

✓
1

g2
U
(µ⇤)

◆

MS

�
✓
�i(µ⇤)

48⇡2

◆

MS

(2)

where �i(µ⇤) are the threshold corrections, computed in the MS scheme, to each gauge

coupling at the scale µ⇤. In general, when masses in an irreducible block are identical, �i(µ)

can be defined as [10]

(�i(µ))MS
= lVn

i
� 21 lVn

i
ln

MVn

µ
+ lSn

i
ln

MSn

µ
+ 8 lFn

i
ln

MFn

µ
(3)

where there is an implicit sum over the n di↵erent superheavy particles of a given type.

It should be understood that only physical scalars contribute. The lX
i

are the weighted

Dynkin indices relative to the SM gauge group i. This computation of �i(µ) is understood

to be accurate only in the region near the scale of unification. The threshold corrections can

therefore be determined in the GUT theory of choice.
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◆
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constant factor. The subscripts MS and DR indicate that the threshold corrections and

gauge couplings need to be computed in the appropriate renormalization scheme depending

on whether one is dealing with a SUSY theory (DR) or not (MS).

From the IR, we only know how to compute gi(µ) and run up to some scale µ⇤. We may

then use Eq. (4) to calculate ��ij as a function of µ without requiring knowledge of the UV

theory. We may then assume that the UV has some GUT theory description, which would

allow us to compute the threshold corrections �i(µ⇤) and their di↵erence, ��ij(µ⇤) given the

5

The couplings gi(µ*) determined from flowing precision IR couplings up 
(including thresholds, if applicable).

What neighborhood of values of Dlij(µ*) do we expect? 

à Approximately Dynkin indices of GUT representations.

For minimal SU(5) models  Dl ~ 10 or so

For SO(10) models Dl ~ 100 or so
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FIG. 2. This key visualization plot shows ��23(µ) as a function of ��12(µ) for the Standard Model

and a CMSSM-like SUSY model. Labels on the line indicate the scale µ. Green regions indicate

that a unification scale around those values is moderately safe from constraints. Orange indicates

relatively unsafe, Red indicates very unsafe.

the couplings enough to bring it back to the origin.

We will see below that in the case of supersymmetry, there is never a problem in this

regard. In fact, the ��’s are arguably too small and threshold corrections have to either

not be present for some reason or must have tuned cancellations at the high scale for exact

unification to occur. In the case of the SM the corrections are large, and the index of the

representations at the high scale must be comparable to the �� values (up to multiplicative

logarithms) of up to several hundred. However, the index of representations of grand uni-

fied theories based on SO(10) are often in the three digits, such as the 126 representation

with index 35 and the 210 representation with index 56 [25]. Indeed, these representa-

tions play a key role in our first example of the next section: Lavoura and Wolfenstein’s

non-supersymmetric SO(10) theory [21].

8

(Ellis, Wells, `15)

(Unexpectedly?) small thresholds needed for CMSSM
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Figure 16: Plot of the threshold corrections needed for exact gauge coupling unification. The numbers

along the line are the scales µ⇤ at which the IR couplings are evaluated for unification and at which point the

needed threshold corrections are computed and then plotted in the plane. The long straight line is assuming

only the SM up to the highest scale. The second line that branches downward is for the case of superpartners

existing at 10
10

GeV, which lowers the needed threshold corrections at high scales.

Fig. 16 shows the required threshold corrections at various putative GUT scales µ⇤ for

the SM and for intermediate scale supersymmetry, where the SUSY partners are all near

1010 GeV. What we find is that supersymmetry deflects the “thresholds line” corresponding

to Eq. (11) to pass closer to the (0, 0) coordinates in the (��12,��23) plane. It also

increases the value of µ⇤ (i.e., GUT scale choice) that has its closest approach to (0, 0). The

result is familiar: the introduction of supersymmetry both reduces the needed threshold

corrections at the high-scale and increases the GUT scale (from the point of view of lowest-

threshold correction is for higher values of µ⇤). This latter element is helpful since one

generally requires that the GUT scale be above about 1015 GeV so that the X, Y GUT

gauge bosons do not induce too large dimension-six operators that cause the proton to decay

faster than current limits allow. If supersymmetry existed at ⇠ 103 GeV, which is still

24

[Ellis, Wells, ‘17]
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Example: Lavoura-Wolfenstein non-supersymmetric SO(10) model

Gauge Bosons Scalars

SO(10) SU(2)⌦ SU(3)[U(1)Y ] Mass SO(10) SU(2)L ⌦ SU(2)R ⌦ SU(4) Mass

45 (1, 1)[0] MR 210 (1, 1, 1) N/A

45 (1, 1)[
q

3
5 ] MR 210 (2, 2, 6) Goldstone

45 (1, 1)[�
q

3
5 ] MR 210 (1, 1, 15) M1

45 (1, 3)[23

q
3
5 ] MR 210 (2, 2, 10) M1

45 (1, 3)[�2
3

q
3
5 ] MR 210 (2, 2, 10) M1

45 (2, 3)[16

q
3
5 ] MV 210 (1, 3, 15) M4

45 (2, 3)[�1
6

q
3
5 ] MV 210 (3, 1, 15) M5

45 (2, 3)[�5
6

q
3
5 ] MV 126 (1, 1, 6) M1

45 (2, 3)[56

q
3
5 ] MV 126 (2, 2, 15) M1

126 (1, 3, 10) M2

126 (3, 1, 10) M3

TABLE I. Table showing the spectrum of superheavy particles contributing to the threshold cor-

rections in the Lavoura-Wolfenstein SO(10) GUT, with their various masses.

The threshold corrections for this particular GUT are obtained by applying the boundary

condition equation for the threshold corrections (Eq. (2)) for each of the vector bosons and

scalars that has a mass near the unification scale and summing over all heavy fields. Each

heavy boson contributes

�
�Vn
i

�
MS

= lVn
i

✓
1 + 21 ln

µ⇤

MV

◆
(7)

where lVn
i

is the Dynkin index of the n-th vector boson relative to the SM group labelled

by i, multiplied by their dimensions relative to the other SM gauge groups. Each scalar

contributes

�
�Sn
i

�
MS

= �lSn
i

ln
µ⇤

MS

(8)

with the same labels as before, with the Dynkin index for the scalar. Given the content of

10
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the Lavoura-Wolfenstein SO(10) GUT, we obtain

�V

1 (µ⇤) = 8 +
294

5
log

µ⇤

MR

+
546

5
log

µ⇤

MV

(9)

�V

2 (µ⇤) = 6 + 126 log
µ⇤

MV

(10)

�V

3 (µ⇤) = 5 + 21 log
µ⇤

MR

++84 log
µ⇤

MV

(11)

for the contributions from vector bosons, and

�S

1 (µ⇤) = �274

5
log

µ⇤

M1
� 142

5
log

µ⇤

M2
� 36

5
log

µ⇤

M3
� 114

5
log

µ⇤

M4
(12)

�S

2 (µ⇤) = �50 log
µ⇤

M1
� 40 log

µ⇤

M3
� 30 log

µ⇤

M5
(13)

�S

3 (µ⇤) = �62 log
µ⇤

M1
� 17 log

µ⇤

M2
� 18 log

µ⇤

M3
� 12 log

µ⇤

M4
� 12 log

µ⇤

M5
(14)

for the contributions from the scalars.

We consider a particular set of high-scale mass ratios, chosen to ensure intersection with

the SM ��ij(µ⇤)

MV

MR

= 20,
MV

M1
= 3,

MV

M2
= 7,

MV

M3
= 8,

MV

M4
= 10,

MV

M5
= 14. (15)

This enables us to evaluate ��ij(µ⇤) in the Lavoura-Wolfenstein GUT. Since we are inter-

ested in what happens if we modify the GUT particle masses, we vary MV , keeping the ratios

fixed. The resultant plot is shown in Fig. 3. The point of intersection with the SM ��ij(µ⇤)

therefore fixes MV in the Lavoura-Wolfenstein SO(10).

This example has now demonstrated how to process IR data in the form of the �� plot of

Fig. 2. Upon choosing a renormalization scale µ⇤ there is a single point in the ��23 ���12

plane that is compatible with exact unification, and it is required that high-scale thresholds

must give those values. In Fig. 3 we show that indeed those values can be achieved for the

spectrum specified in table I, and exact unification therefore is shown to be viable.

B. Tobe-Wells Supersymmetric SU(5)

We also compare with a SUSY model, taking as an example an SU(5) GUT described

by Tobe and Wells [22]. The Higgs structure of this GUT consist of {24H ,5H ,5H}, and

11
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FIG. 3. Plot of ��23(µ) as a function of ��12(µ). Shown is the Lavoura-Wolfenstein SO(10) (blue)

with MV /MR = 20, MV /M1 = 3, MV /M2 = 7, MV /M3 = 8, MV /M4 = 10 and MV /M5 = 14, with

MV varying between 1013 and 1018. The star corresponds to the required values of ��12(µ⇤) and

��23(µ⇤) in the SM. We find that MV = 1.4 ⇥ 1015 gives the desired ��12(µ⇤) and ��23(µ⇤) in

the Lavoura-Wolfenstein SO(10) for the given mass ratios.

Gauge Bosons Scalars

SU(5) SU(2)⌦ SU(3)[U(1)Y ] Mass SU(5) SU(2)⌦ SU(3)[U(1)Y ] Mass

24 (2, 3)[�5
6

q
3
5 ] MV 24H All M⌃

24 (2, 3)[56

q
3
5 ] MV 5H + 5H (1, 3)[�1

3

q
3
5 ] + (1, 3)[13

q
3
5 ] MHc

TABLE II. Table showing the spectrum of superheavy particles contributing to the threshold cor-

rections in the Tobe-Wells SU(5) GUT, with their various masses.

the gauge representation is a 24. The spectrum of the superheavy particles in this GUT is

shown in Table II.

In this GUT there is an additional non-renormalizable operator connecting the adjoint

Higgs representation to the gauge fields. The operator in question arises from the gauge-

12
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Low-scale SUSY can tolerate surprisingly low threshold corrections at high scale

Non-susy unification possible with “big yet reasonable” threshold corrections
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FIG. 2. This key visualization plot shows ��23(µ) as a function of ��12(µ) for the Standard Model

and a CMSSM-like SUSY model. Labels on the line indicate the scale µ. Green regions indicate

that a unification scale around those values is moderately safe from constraints. Orange indicates

relatively unsafe, Red indicates very unsafe.

the couplings enough to bring it back to the origin.

We will see below that in the case of supersymmetry, there is never a problem in this

regard. In fact, the ��’s are arguably too small and threshold corrections have to either

not be present for some reason or must have tuned cancellations at the high scale for exact

unification to occur. In the case of the SM the corrections are large, and the index of the

representations at the high scale must be comparable to the �� values (up to multiplicative

logarithms) of up to several hundred. However, the index of representations of grand uni-

fied theories based on SO(10) are often in the three digits, such as the 126 representation

with index 35 and the 210 representation with index 56 [25]. Indeed, these representa-

tions play a key role in our first example of the next section: Lavoura and Wolfenstein’s

non-supersymmetric SO(10) theory [21].

8

Some general points

Ellis, Wells, ‘15
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... And we have not even talked about gravity corrections:

NROs induced by supergravity are expected and of sufficient size to implement the flavor

gymnastics required to reproduce the masses and mixings of the quarks and leptons.

It has also been known for some time that NROs can dramatically affect gauge coupling

unification and gaugino masses [7]-[13]. These operators should not necessarily be viewed as

sources of GUT-scale obfuscation, but rather as potential saviors for a theory that struggles

to survive without them. Minimal SU(5) is one such theory.

We can write the gauge-kinetic function of minimal SU(5) as

∫

d2θ
[

S

8MPl
WW +

yΣ

MPl
WW

]

(3)

where Σ = 24H and ⟨S⟩ = MPl/g2G + θ2FS contains the effective singlet supersymmetry

breaking. The SU(5) gauge coupling is gG and the universal contribution to the masses of

all gauginos is M1/2 = −g2GFS/(2MPl).

This second term of Eq. (3) is the focus of our analysis2 as it connects the adjoint Higgs

representation to the gauge fields via a NRO. Not only is the operator expected, but it is

guaranteed to contribute to the gauge coupling corrections because the adjoint Higgs must

get a vacuum expectation value (vev) of the form

⟨Σ⟩ = vΣ diag
(

2

3
,
2

3
,
2

3
,−1,−1

)

(4)

to break SU(5) to SU(3) × SU(2)L × U(1)Y at the GUT scale. The numerical value of vΣ

depends on details of the couplings but should be around the GUT scale of 1016GeV.

The relationships between the GUT scale gauge coupling gG and the low-scale gauge

couplings gi(Q) of the MSSM effective theory are

1

g2i (Q)
=

1

g2G(Q)
+∆G

i (Q) + ciϵ (5)

where ϵ = 8yvΣ/MPl and ci = {−1/3,−1, 2/3} for the gauge groups i = {U(1)Y , SU(2)L, SU(3)}

respectively. Here we adopt the GUT normalized U(1)Y gauge coupling g21 = (5/3)g2Y .

The ∆G
i (Q) functions are the threshold corrections due to heavy GUT states; ∆G

i (Q) =

1/(8π2)
∑

a bai ln(Q/Ma) where bai and Ma are β function coefficient of a heavy particle and

its mass, respectively. They are explicitly written by

∆G
1 (Q) =

1

8π2

(

−10 ln
Q

MV
+

2

5
ln

Q

MHc

)

(6)

2See Refs. [5, 14] for discussion of other types of NROs useful to cure the minimal SU(5) problem.
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2

%-level ε is enough to “save” minimal SUSY SU(5) from too small triplet 
Higgs mass needed for exact unification à too fast proton decay

Tobe, JDW
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Let us take exact unification – “precision unification” -- 
very seriously (it is telling us something?)

For some reason (agnostic) the threshold corrections at 
high-scale are negligible.

4D Perspective theory:

Minimal supersymmetry spontaneously broken at some 
scale Λ.

Big desert between here and the Planck scale. 

Gauge couplings unify ”precisely” with negligible 
corrections.
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2

The Higgs boson mass is an output in the supersym-
metric theories, being a function of other masses and cou-
plings already specified by the model. When identifying
models with exact gauge unification we require the light-
est CP-even neutral Higgs boson mass to be ≥ 125 GeV
within uncertainties of the calculation.

Furthermore, we also identify regions of parameter
space where the lightest neutralino is the lightest super-
symmetric particle (LSP), and can generate the required
thermal abundance of Higgsino or wino DM assuming
R-parity is conserved [5, 7, 20–33].
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FIG. 1. fl⁄ as a function of the putative unification scale
in the SM (black line) and in the MSSM with a common
supersymmetric particle mass threshold m̃ (various colored
lines for various m̃ as labeled).

3. MSSM with a common threshold. It is well-
known that, unlike in the SM, the gauge couplings ap-
proximately unify in the MSSM with supersymmetric
particle masses roughly around the TeV scale. As a mea-
sure of unification of the gauge couplings, we define

fl⁄

48fi2 ©
ı̂ıÙÿ

i ”=j

A
1
g2

i

≠ 1
g2

j

B2

, (1)

with i, j = 1, 2, 3. Here, gi are the gauge couplings with
the usual GUT normalization. The minimum value of fl⁄,
obtained at the scale µı, is denoted by flmin

⁄ (© fl⁄(µı)).
Within standard grand unified theories flmin

⁄ is a
weighted logarithmic mass sum of remnant high-
scale representations. Specifically, assuming degener-
ate masses within an irreducible representation, we have
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with an implicit sum over n di�erent particles for each
of the vectors Vn, scalars Sn, and fermions Fn. Here, IX

i

are the Dynkin indices of the representation of X under
(SU(3)c, SU(2)L, U(1)Y ) for i = (3, 2, 1), respectively. In
typical supersymmetric GUT theories, such as those dis-
cussed in [35], one expects to have values of flmin

⁄ roughly
of order hundreds.

For precision unification, on the other hand, we re-
quire flmin

⁄ < 20 which roughly corresponds to 3‡ devia-
tion from exact gauge coupling unification. By that we
mean that we allow a factor of three higher correction
than what might arise from naive Planck scale correc-
tions:

!
–≠1

i ≠ –≠1
j

"
/4fi ≥ µı/MP (see also Refs. [9, 10]).

Such a threshold should not be taken too seriously. There
are potential reasons for raising the allowed flmin

⁄ and for
lowering it somewhat to define “precision unification”,
but to be concrete we choose flmin

⁄ < 20.
Figure 1 shows fl⁄ as a function of the putative unifica-

tion scale in the SM and MSSM with various choices for
the common superpartner threshold m̃. We performed
the renormalization group evolution (RGE) of the gauge
couplings in the (MS)SM at 2-loop (along with 1-loop
running of the third generation Yukawa couplings) [36].
It is evident from the figure that precision unification is
achieved in the MSSM with a common threshold if m̃ is
roughly in the 1 ≠ 10 TeV range.

4. High scale scenarios. We now turn to the im-
plications of exact gauge unification in mSUGRA and
mAMSB frameworks. Both frameworks have three com-
mon parameters: the unified scalar mass m0 at the GUT
scale1, the ratio of the vacuum expectation values of the
two Higgs doublets tan — (at MZ), and the sign of the
Higgsino mass parameter µ. mSUGRA has two addi-
tional parameters, namely, the unified gaugino mass m1/2
at the GUT scale and the universal scalar trilinear cou-
pling A0 at the GUT scale. On the other hand, mAMSB
has one additional parameter: the gravitino mass m3/2
at the GUT scale. In mSUGRA (mAMSB), bino (wino)
is the lightest gaugino. Therefore, the LSP can be bino-
like (wino-like) or Higgsino-like in mSUGRA (mAMSB),
depending on µ and tan —.

1 Supersymmetric spectra generators, including Spheno [37, 38],
which we have employed, commonly define the GUT scale as the
scale where the gauge couplings g1 and g2 unify.

First, let’s define a quantity à 0 when there is 
precision unification:

At every scale we can compute ρλ(Q).

Let’s do the simplest thing first with all SUSY masses equal.
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The Higgs boson mass is an output in the supersym-
metric theories, being a function of other masses and cou-
plings already specified by the model. When identifying
models with exact gauge unification we require the light-
est CP-even neutral Higgs boson mass to be ≥ 125 GeV
within uncertainties of the calculation.

Furthermore, we also identify regions of parameter
space where the lightest neutralino is the lightest super-
symmetric particle (LSP), and can generate the required
thermal abundance of Higgsino or wino DM assuming
R-parity is conserved [5, 7, 20–33].
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FIG. 1. fl⁄ as a function of the putative unification scale
in the SM (black line) and in the MSSM with a common
supersymmetric particle mass threshold m̃ (various colored
lines for various m̃ as labeled).

3. MSSM with a common threshold. It is well-
known that, unlike in the SM, the gauge couplings ap-
proximately unify in the MSSM with supersymmetric
particle masses roughly around the TeV scale. As a mea-
sure of unification of the gauge couplings, we define
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cussed in [35], one expects to have values of flmin
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of order hundreds.
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Such a threshold should not be taken too seriously. There
are potential reasons for raising the allowed flmin

⁄ and for
lowering it somewhat to define “precision unification”,
but to be concrete we choose flmin

⁄ < 20.
Figure 1 shows fl⁄ as a function of the putative unifica-

tion scale in the SM and MSSM with various choices for
the common superpartner threshold m̃. We performed
the renormalization group evolution (RGE) of the gauge
couplings in the (MS)SM at 2-loop (along with 1-loop
running of the third generation Yukawa couplings) [36].
It is evident from the figure that precision unification is
achieved in the MSSM with a common threshold if m̃ is
roughly in the 1 ≠ 10 TeV range.

4. High scale scenarios. We now turn to the im-
plications of exact gauge unification in mSUGRA and
mAMSB frameworks. Both frameworks have three com-
mon parameters: the unified scalar mass m0 at the GUT
scale1, the ratio of the vacuum expectation values of the
two Higgs doublets tan — (at MZ), and the sign of the
Higgsino mass parameter µ. mSUGRA has two addi-
tional parameters, namely, the unified gaugino mass m1/2
at the GUT scale and the universal scalar trilinear cou-
pling A0 at the GUT scale. On the other hand, mAMSB
has one additional parameter: the gravitino mass m3/2
at the GUT scale. In mSUGRA (mAMSB), bino (wino)
is the lightest gaugino. Therefore, the LSP can be bino-
like (wino-like) or Higgsino-like in mSUGRA (mAMSB),
depending on µ and tan —.

1 Supersymmetric spectra generators, including Spheno [37, 38],
which we have employed, commonly define the GUT scale as the
scale where the gauge couplings g1 and g2 unify.

Bhattiprolu, JDW, ‘24

The TeV scale is the 
scale that gives most 
precise unification.

Msusy=Mz à no 
precision unification.
[Cf. worries people 
had of “matching 
alphas”]

Unification much 
better than SM even 
for PeV scale or 
higher.
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FIG. 3. flmin
⁄ plotted against the absolute value of the µ term (top panels) and the geometric mean of the top squark masses

(bottom panels) in mSUGRA (left) and mAMSB (right) scenarios. The gray points correspond to all models with precise gauge
coupling unification (flmin

⁄ < 20) and the Higgs mass mh within 3 GeV of 125.25 GeV. Various colored points correspond to
various special cases as labeled.

DM.

In Figure 2, we show the parameter space (gray points)
in both mSUGRA (left panels) and mAMSB (right pan-
els) frameworks with precise gauge coupling unification
(flmin

⁄ < 20) and the observed Higgs boson mass within
3 GeV of 125.25 GeV. Specifically, m0 vs m1/2 (top-
left panel) and |µ| vs tan — (bottom-left panel) scat-
ter plots in mSUGRA. And m0 vs M2 (or equivalently
m3/2 ≥ 4fiM2/–2) (top-right panel) and |µ| vs tan —
(bottom-right panel) scatter plots in mAMSB. Figure 2
also shows the parameter space where the neutralino
LSP, that can reproduce the required thermal DM abun-
dance, is Higgsino-like (red points) or wino-like (blue

points). In mSUGRA, since the neutralino LSP can-
not be wino-like, there are no cases with wino DM. Also
shown in the figure are the cases (orange points) where
m0 = m1/2 in mSUGRA (left panels) and m0 = m3/2 in
mAMSB (right panels).

Finally, Figure 3 shows flmin
⁄ plotted as a function of

the absolute value of the µ term (top panels) and the
geometric mean of the stop masses Ô

mt̃1mt̃2 (bottom
panels) in mSUGRA (left panels) and mAMSB (right
panels) scenarios. It is apparent from the figure that
in the cases that satisfy the observed Higgs boson mass
constraint with (near-)perfect gauge coupling unification,
the |µ| term is nearly in the range of one to a few hun-
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FIG. 3.8: Proton partial lifetime in the p æ e+fi0 channel that is expected to be excluded at
90% or 95% CL [top panel; from eq. (3.10)] or discovered at Z = 3 or Z = 5 significance [bottom
panel; from eq. (3.11)] at Hyper-Kamiokande with 186 kilotons of water, as a function of runtime,
with the uncertainties in background and signal selection e�ciency listed in Table 3.2, taken from
ref. [48]. Our estimates of the current 95%, 90%, 68%, and 50% CL exclusion limit on proton
partial lifetime, based on Super-Kamiokande’s data from 2020 [45], are shown as horizontal dashed
lines. Bhattiprolu, Martin, JDW, ‘23
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Conclusions

Gauge coupling unification/GUTs possible in SM-like theories

G.C.U./GUT is still rather compelling from several points of view.

Higgs mass discovery consistent with SM perturbative GUT, and 
SUSY GUT Higgs mass

Low-scale SUSY unifies (too?) easily

Msusy < PeV is just fine for G.C.U. and even precision G.C.U.

Proton decay is very sensitive to Msusy and MX and therefore 
not assured.

Only EW finetuning/hierarchy problem/naturalness concerns 
might keep you from believing in GUTs ...


