About Me

Background, past activities

Name: Yu Hamada

• I got my Ph.D @ Kyoto U., Japan (2021)

- 1st postdoc @ KEK Theory Group,
 Tsukuba City, Japan 2021-2023
- 2nd postdoc @ DESY Theory Group
 (Cosmology) since October 2023
- hobby: drinking, running
- favorite drink: beer, Japanese sake
 (Japanese alcohol), gin, rum

Activities and challenges

- topological defects (eg., domain wall), gravitational wave
- muon collider called μTRISTAN arXiv:2201.06664, 2210.11083, 2406.04500
 - using ultra-cold μ^+ beam for g-2/EDM
 - μ^+ cooling technology has been established while μ^- beam is difficult
 - μ^+e^- collider and/or $\mu^+\mu^+$ collider
 - Higgs precision, (in)direct NP search

Activities and challenges

- topological defects (eg., domain wall), gravitational wave
- muon collider called μTRISTAN arXiv:2201.06664, 2210.11083, 2406.04500
 - using ultra-cold μ^+ beam for g-2/EDM
 - μ^+ cooling technology has been established while μ^- beam is difficult
 - μ^+e^- collider and/or $\mu^+\mu^+$ collider
 - Higgs precision, (in)direct NP search

Activities and challenges

- topological defects (eg., domain wall), gravitational wave
- muon collider called μTRISTAN arXiv:2201.06664, 2210.11083, 2406.04500
 - using ultra-cold μ^+ beam for g-2/EDM
 - μ^+ cooling technology has been established while μ^- beam is difficult
 - μ^+e^- collider and/or $\mu^+\mu^+$ collider
 - Higgs precision, (in)direct NP search

$$E_{\mu^{+}} = 1 \text{ TeV}, E_{e^{-}} = 30 \text{ GeV}$$
 ν_{e} h $\bar{\nu}_{\mu}$ $\mathcal{L}_{\mu^{+}e^{-}} = 4.6 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ $N(\text{Higgs}) \simeq 9.5 \times 10^{4}$ e^{-} μ^{+} (10-yr run)

Activities and challenges

- topological defects (eg., domain wall), gravitational wave
- muon collider called μTRISTAN arXiv:2201.06664, 2210.11083, 2406.04500
 - using ultra-cold μ^+ beam for g-2/EDM
 - μ^+ cooling technology has been established while μ^- beam is difficult
 - μ^+e^- collider and/or $\mu^+\mu^+$ collider
 - Higgs precision, (in)direct NP search

J-PARC Operation Status **3**

World's first cooling and acceleration of muon

Home > Press Release > Materials and Life Science > - The first muon accelerator finally coming to a reality. -

2024.05.23

World's first cooling and acceleration of muon - The first muon accelerator finally coming to a reality. -

30th Future Colliders @ DESY meeting

SemRm 1 (DESY)

Description SemRm 1

if-need-be zoom:

https://desy.zoom.us/j/87044077489

Meeting ID: 870 4407 7489

Passcode: FC@DESY

10:00 → 10:05 News and Announcements

Speaker: Benno List (IPP (Info-management Prozesse u. Projekte))

10:05 → 10:30 Flavour Challenges from Belle II to Future Colliders

Speaker: Thibaud Humair (BELLE (BELLE Gruppe))

10:30 → 10:55 **muTRISTAN**

Speaker: Yu Hamada (None)

① 25m

925m I

My Favorite Plot

Or the one question you always wanted to ask!

My Favorite Plot

Or the one question you always wanted to ask!

- distinction of a lot of BSM models
- → new age of particle physics!?

