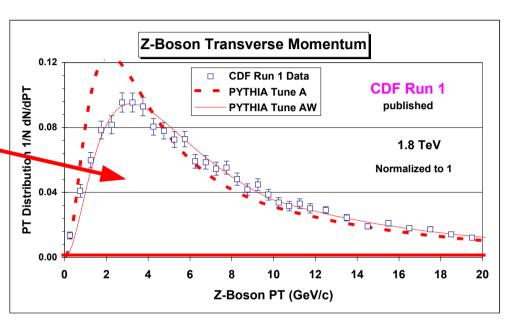
Underlying events and PDF4MC

H. Jung (DESY)

why special PDFs for MCs are needed, necessary and important:
 Mini workshop held on 18 - 19 May at DESY on:

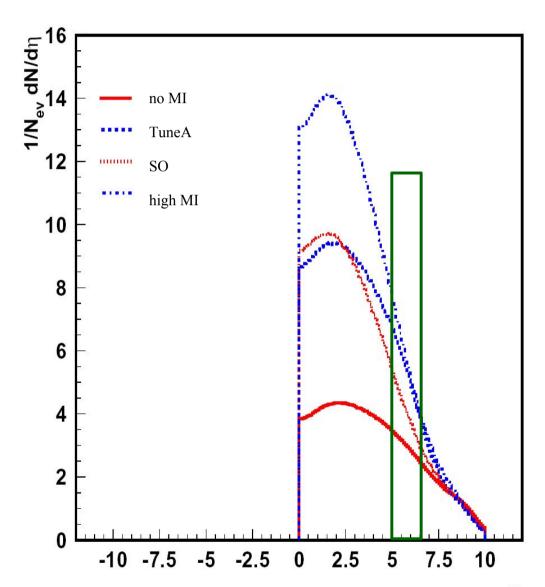
Multiparton Interactions and Underlying events


https://www.desy.de/~jung/multiple-interactions/

- Strategy: HOWTO obtain PDF4MC
- Proof of concept
 1st attempts
- Conclusions

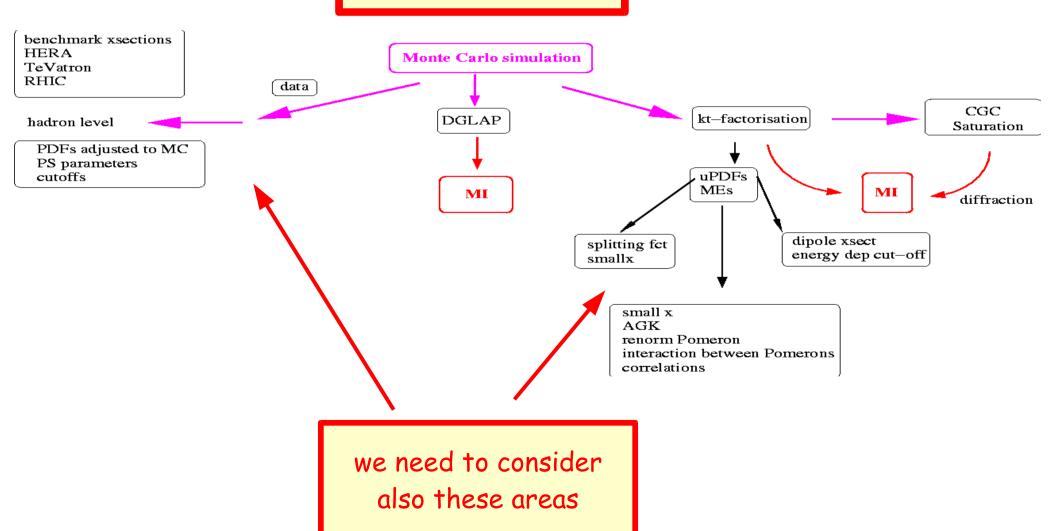
MI workshop: experimental issues

- Experimental provocateur: R.Field
 - what do we know about soft underlying events and hard multiple interactions?
 - what is needed for LHC predictions?
 - which measurements are needed?
 - Pt spectrum of W/Z depends on
 - UE event parameters
 - PDFs
 - ISR parameters, cutoffs, ordering etc
 - intrinsic kt
 - Using NLO or LO pdfs? it is much more than just MC tuning ...


Rick Field - Florida/CDF/CMS

→ Shows the Run 1 Z-boson p_T distribution ($\langle p_T \rangle \approx 11.5 \ GeV/c$) compared with PYTHIA Tune A ($\langle p_T(Z) \rangle = 9.7 \ GeV/c$), and PYTHIA Tune AW ($\langle p_T(Z) \rangle = 11.7 \ GeV/c$).

Soft underlying events

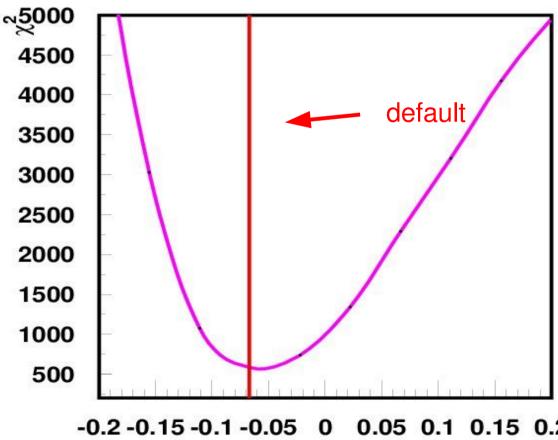

- Models tuned to TeVatron data
- → give HUGE differences at LHC ...
- the tunings depend on PDFs, parton showers, matrixelements and all that
- influence on nearly all observables ...
- better understand multiple interactions ...
- → better tunings...

η

Where are we and where to go?

we are here with simulations

1st steps for PDF4MC

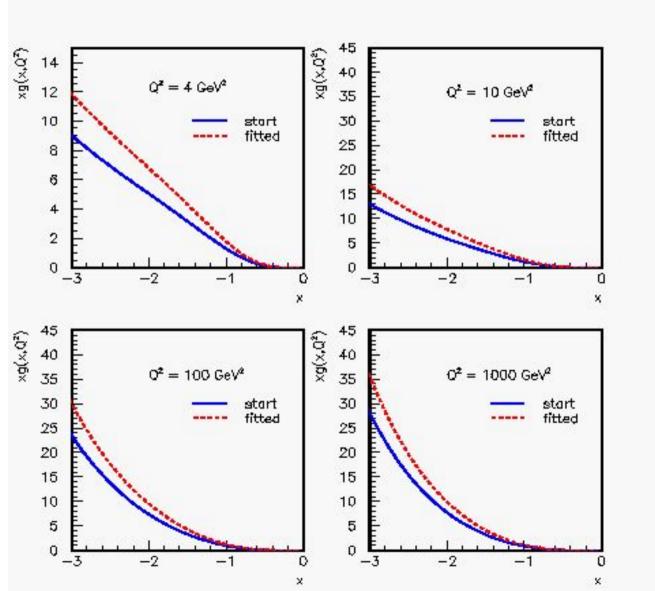

- use LHAPDF library for parton evolution and alphas
 - use any distribution and evolution code
 - evolve for every call (fast enough, can be improved if necessary...)
 - massive/massless treatment
 - LO/NLO etc
- use HZTool/RIVET for comparison of MC prediction with measurements
 - HERA H1/ZEUS: F_2 , F_2^c , jets etc....
 - TeVatron CDF/D0: jets, W/Z x section as fct of pt
 - (CTEQ also wants to do this....)
- use general fit program (as used for CASCADE uPDF fits)
 - easily to extent for other MC generators and also NLO programs
 - BUT it is slow !!!
 - Improvements for fits (see talk by K.Kutak)
 - calculation in grid points
 - → parametrization
 - → fit to data (including uncertainties)

Proof of Concept

- use CTEQ6L as starting distribution
- scan different parameters

$$xG(x,\mu_0) \sim A_0 x^{A_1} \cdots$$

- normalization changed
- small x-dependence of gluon changes slightly !!!


A٦

The gluon after fitting

- Use LO fit....
- Fit F₂ by varying

$$xg(x,\mu) = A_0 x^{A_1} \cdots$$
 and $lpha_{
m s}(\mu)$

- Fit changes
 normalization and
 slope of gluon ... as
 seen in the scan....
- χ^2/ndf improves...., but can still be better....
- → Not yet the final answer...

Conclusions

- use PDF4MC helps to improve description of data by MCs
 - tuned to include also underlying events
 - → use it for better detector simulation
 - → will improve model dependence of data correction to hadron level
 - → smaller systematic uncertainty
- use of PDF4MC improves our physics understanding:
 - → includes kinematic effects
 - → allows to use all order resummed predictions (from PS MCs)
 - → allows to analyze data which cannot be compared to parton level NLO calculations ...
- PDF4MC can be directly used at LHC with much improved predictive power
 - \rightarrow consistent treatment of $\alpha_{\rm s}(\mu)$
 - consistent treatment of parton showers
 - consistent treatment of pt cutoffs and other parameters

Plans

- perform 1st fits to F₂ and TeVatron during summer
 - include TeVatron with W/Z and Jets
 - include all HERA data
 - summerstudent
 - end of summer: 1st HERA PDF4MC
- use tuned MC for UE studies (A. Knutsson)
 - in central region (with F. Bechtel): multiplicities
 - extend to tag with energy deposit in CASTOR