
It work’s on my machine

A workshop on software testing

Thomas Madlener
Apr 26, 2024

Menu for today

• Basics of testing (theory) and a few buzzwords
• Introduction to pytest and Catch2 frameworks
• Some bits about organizing code / packaging
• Some pointers for setting up CI
• Exercises (and food for thought)

Apr 26, 2024 T.Madlener | It work’s on my machine 1

What not to expect

• Introduction to c++ / python, git or cmake
• See the HSF Training Courses for that

• An indepth lecture about all things to know about testing
• A complete guide on pytest or Catch2

• Check the docs pytest, Catch2

• A complete guide on setting up CI
• A complete guide on packaging
• An overview of available unittest frameworks

Apr 26, 2024 T.Madlener | It work’s on my machine 2

https://hepsoftwarefoundation.org/training/center.html
https://docs.pytest.org/en/stable/contents.html
https://github.com/catchorg/Catch2/blob/devel/docs/Readme.md#top

Why write tests at all?

• “This worked on my machine!”
• “Ah yeah, this issue, we fixed it a few months ago. I wonder why it’s not
working now?”

• “I only changed this one line, why is everything broken now?”
• “Why is debugging so hard? Isn’t there an easier way?”

Apr 26, 2024 T.Madlener | It work’s on my machine 3

What tests can do for you

• Confidence that things work (and keep working)
• Enabling refactoring without breaking things

• Shift left in the debugging process
• Everything that has a meaningful test can be excluded from debugging

• More modular code
• Builtin (and up to date) examples and documentation for your code
• Nice status badges on your repository (if you run them in CI)

What it (unfortunately) can’t do

• Make sure there are no bugs in your code at all

Apr 26, 2024 T.Madlener | It work’s on my machine 4

The testing pyramid

Unit Tests

Integration
Tests

System
Tests

Number of tests

S
iz

e
 /

 t
im

e
 t

o
 r

e
su

lt

E
ff

o
rt

 &
 f

ra
g
ili

ty

Manual
Tests • Focus on unit tests today

• Only unit tests is not enough for a
working system

• Only integration / system tests are
hard to maintain and interpret

• Unit tests are
• quick to run
• small in scope
• independent of each other
• large in numbers

Apr 26, 2024 T.Madlener | It work’s on my machine 5

My first unittest

Code to test

def add_one(number):
return number + 1

int add_one(int number) {
return number + 1;

}

Unit test

def test_add_one():
assert basics.add_one(3) == 4

TEST_CASE("add_one") {
REQUIRE(basics::add_one(3) == 4);

}

python (pytest) C++ (Catch2)

Apr 26, 2024 T.Madlener | It work’s on my machine 6

Anatomy of a unit test

• (Arrange)
• Setup things that you want to test (if necessary)

• Act
• Run the function that you want to test

• Assert
• Check that the results of the function are as expected

• (Cleanup)
• Cleanup resources (if necessary)

Apr 26, 2024 T.Madlener | It work’s on my machine 7

Writing testable code

• Small functions / classes
• Functions / classes with a single
purpose

• “How can I test this?”
• Side benefits:

• Reusable code
• Easier to maintain
• Easier to understand

def monster_function(fn, options):
----- collect data -----
... (20 lines of code)
... I mean it just takes a bit to do that
...

----- calculate stuff -----
... (50 lines of code)
... Obviously these are non-trivial calculations
... They require many comments to explain as well
... So many lines of code
...

----- make plots -----
... (50 lines of code)
... We could do this in 10 lines maybe?
... But we want nice plots
... We just have to write this once
... Then we simply copy it to the next function
... I wonder if there is a better way to do this
...

----- write output file -----
... (20 lines of code)
... Otherwise what's the point?
...

Apr 26, 2024 T.Madlener | It work’s on my machine 8

Writing testable code

• Small functions / classes
• Functions / classes with a single
purpose

• “How can I test this?”

• Side benefits:
• Reusable code
• Easier to maintain
• Easier to understand

def collect_data(fn):
collects data
return data

def calc_stuff(data, options):
calculate result
return result

def make_plots(data, result):
make plots
return plots

def write_output(plots, fn):
write the output

def monster_function(fn, options):
data = collect_data(fn)
res = calc_stuff(data, options)
plots = make_plots(data, res)
write_output(plots, fn + ".out")

Apr 26, 2024 T.Madlener | It work’s on my machine 8

Writing testable code

• Small functions / classes
• Functions / classes with a single
purpose

• “How can I test this?”
• Side benefits:

• Reusable code
• Easier to maintain
• Easier to understand

def collect_data(fn):
collects data
return data

def calc_stuff(data, options):
calculate result
return result

def make_plots(data, result):
make plots
return plots

def write_output(plots, fn):
write the output

def monster_function(fn, options):
data = collect_data(fn)
res = calc_stuff(data, options)
plots = make_plots(data, res)
write_output(plots, fn + ".out")

Apr 26, 2024 T.Madlener | It work’s on my machine 8

Practical considerations for unit tests

• Also test the error path, not just the happy path

def foo(a):
if not isinstance(a, int):

raise ValueError()
return a * 2

int bar(int a) {
if (a == 0) {

throw std::runtime_error("");
}
return 42 / a;

}

def test_foo_invalid_input():
with pytest.raises(ValueError):

foo(3.14)

TEST_CASE("bar invalid input") {
REQUIRE_THROWS_AS(bar(0),
std::runtime_error);

}

python (pytest) C++ (Catch2)
Apr 26, 2024 T.Madlener | It work’s on my machine 9

Practical considerations for unit tests

• Floating point comparisons are hard (see e.g. python docs)

from pytest import approx

def test_floats():
This will fail!
assert 0.1 + 0.2 == 0.3
This will pass
assert 0.1 + 0.2 == approx(0.3)

using namespace Catch::Matchers;

TEST_CASE("float comparison") {
// This will fail
REQUIRE(0.1 + 0.2 == 0.3);
// This will pass
REQUIRE_THAT(0.1 + 0.2,

WithinAbs(0.3, .1));
}

python (pytest) C++ (Catch2)

• Need to choose required / desired accuracy up-front!
Apr 26, 2024 T.Madlener | It work’s on my machine 10

https://docs.python.org/3/tutorial/floatingpoint.html

Practical considerations for unit tests

• Test fixtures allow you to create inputs for tests
• Handy if the setup requires a few steps
• Useful when tests require resources (db connection, some running server, ...)

• Unit tests should be very easy to read and understand
• Using random inputs for unit tests is possible but the assertions are hard to
get right

• Even statistial tests fail from time to time (by design)
• It can be an extremely good way of finding bugs (Fuzzing)

• A flaky test quickly becomes useless
• Ignored tests are (almost) worse than no tests

Apr 26, 2024 T.Madlener | It work’s on my machine 11

https://en.wikipedia.org/wiki/Fuzzing

General considerations for tests

• Try to group tests
• Allows you to run only “interesting” tests during development

• Turn issues into test cases
• Invest the time to create a minimal reproducer
• Red-Green Testing

• Almost anything that can be automated / scripted can be turned into a
(integration / system) test

• (Usually) trivial to integrate into CI

• Some things don’t need tests

Apr 26, 2024 T.Madlener | It work’s on my machine 12

Continuous Integration - CI

• Frequently integrate code changes
into main branch

• Quick feedback loop
• Often synonymous with “having
tests that run automatically on
repository”

Apr 26, 2024 T.Madlener | It work’s on my machine 13

CI - Some technicalities

• Available on gitlab (GitLab CI/CD) and github (GitHub Actions)
• Very similar working principles

• YAML as config language (but different grammars)

• See our introduction for the basics of GitLab CI/CD
• Exercises have configuration for both

• Push to github if you want to see github actions
• Slightly different approaches for dependencies

Apr 26, 2024 T.Madlener | It work’s on my machine 14

https://docs.gitlab.com/ee/ci/
https://docs.github.com/en/actions
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/gitlab-ci

Considerations for CI

• You can run more stuff than just tests in CI
• E.g. static analyzers, linters, documentation generation & deployment

• Keep the feedback loop as short as possible
• Consider stages for running quick tests first

• Run on different platforms / compilers, ...
• Keep dependencies stable
• Include enough output to diagnose the problem quickly

• Consider storing artifacts that can be inspected

• Make it possible to reproduce the CI environment locally

Apr 26, 2024 T.Madlener | It work’s on my machine 15

Summary

• (Non-trivial) software
requires tests

• Unit tests form the basis
• Test automation enables CI
• Even tested software will
have bugs

Apr 26, 2024 T.Madlener | It work’s on my machine 16

Exercises

• There are two sets of prepared exercises for either python or c++
• Very similar examples to start with, some obvious differences in setup
• The intermediate / advanced examples differ between the two
• Solutions included, you can also do them on your own after the workshop
• Basic configuration for CI already in place
• Pick one to start with for now
• Initial setup interactively together in first half / now
• Second half of workshop to work on exercises on your own

• Call us for help whenever necessary

.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/python-unittesting

.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/cpp-unittesting

Apr 26, 2024 T.Madlener | It work’s on my machine 17

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/python-unittesting
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/cpp-unittesting

