

Si Detectors for Future Colliders

Dr. Jens Weingarten AG Kröninger

Physics

- flavour tagging, low pT tracking, vertex/jet charge determination
- momentum resolution, tracking efficiency, track separation, low pT fake track rejection
- (up to tertiary) vertex resolution few μm
- momentum resolution $\frac{\sigma_{pT}}{p_T^2} \approx 2 \times 10^{-5} \text{ GeV}^{-1}$

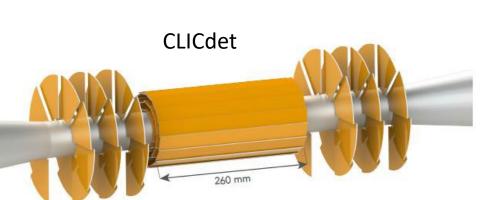
Detector Requirements

- large lever arm $\rightarrow R_{min}$, R_{max}
- coverage $|\cos \theta| < 0.99$ ($\rightarrow \eta > 2.7$?)
- → large area (Si Wrapper@IDEA: ~90 m²)
- single point spatial resolution:
 - $\sim 3 \ \mu m$ for vertex detector
 - $\sim 10 \ \mu m$ for tracking detector
- time resolution: ~1 ns (<100 ps for TOF layer)

Environment

- bunch separation 20 3000 ns (except CLIC: 0.5 ns), power pulsing@ linear colliders, not @ circular ones
- beamstrahlung (i.e. beam induced background) high for linear, low for circular colliders

- radiation hardness: O(100 kRad/yr) & O(10¹¹) n_{eq}/yr
- low mass: 0.1 0.2 % X₀ per layer (+ beam pipe ~0.14% X0@ILC or ~0.3% X0@FCC)
 - \rightarrow gas flow cooling
 - → low power: $\leq 50 \text{ mW/cm}^2$
- low mass services
 - → power distribution, data rate (silicon photonics?)


3

Low material → Baseline is air flow cooling → max. power density not quite clear: 20 - 50 mW/cm²?

Power requirement conflicts with all other parameters

- Driving parameters
 - number of channels \rightarrow pixel pitch, single-point resolution
 - charge collection speed \rightarrow time resolution
 - data rate \rightarrow on-chip and off-chip data transfer
 - total surface
- Power sharing
 - Analog part: 25-50% \rightarrow pixel density, charge collection speed
 - Digital part: 25-50% \rightarrow on-chip data transfer, clock frequency
 - Output driver: 25%
- ➔ Architecture optimization crucial
 - priority encoding, asynchronous design, etc
- → Technology: 180nm to 65nm ~50% power reduction
- → Disk layers might hinder air extraction

Power Analog $(mW/chip)$	49.22
Power Bias $(mW/chip)$	4.5
Power PriorityEncoder (mW/chip)	4.219
Power DigitalPeriphery (mW/chip)	64.27
Power PLL (mW/chip)	18.5
Power Serializer With Data (mW/chip)	86.06
Power Serializer With No Data (mW/chip)	0
Power LVDS (mW/chip)	56.4

technische universität dortmund

Power challenges

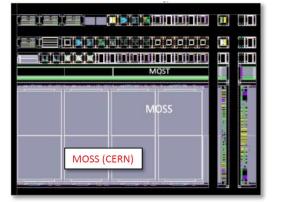
adapted from A. Besson

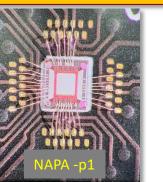
Detector concepts

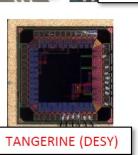
Number of common topics to be addressed, but all detector concepts include different Silicon detectors:


- Vertex detector
- Tracking detector
- TOF layer for particle ID

- → Development can (should?) be split into
 - extremely high performance: improve space and/or time resolution
 - single-point resolution $\leq 3\mu m$ non-trivial today
 - timing at small radius very challenging: O(1ps)
 - high performance, large area: reduce cost per area
 - lower hit density and longer TOF at large radii


Large number of development lines - a selection





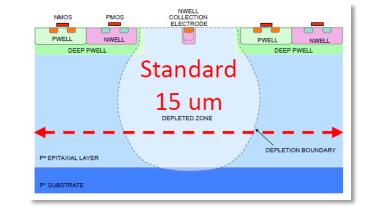
Solution of the second state 1 Memory of Stage 2 Memory of Stage 2

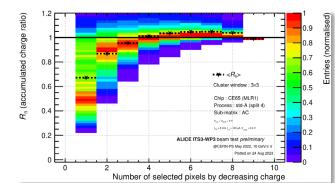
And probably many more... Apologies to all I forgot!

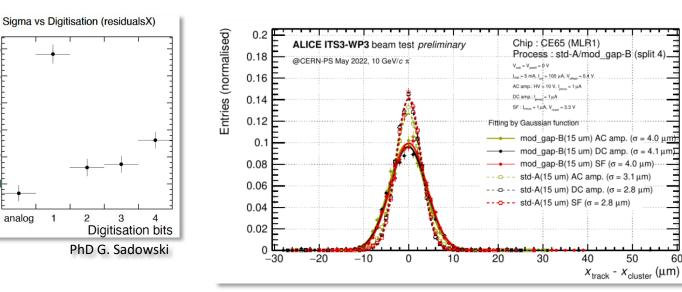
APTS (CERN)

Most focussed on monolithic detectors But: Hybrid detectors are not dead!

CE-65 (IPHC)




Spatial Resolution


Resolution in each layer depends on

- Pixel pitch •
 - most prototypes: 10 35 µm
 - in conflict with in-pixel functionality
- Charge deposition \rightarrow sensitive layer thickness
 - epi layer thickness ~10 μm
 - DMAPS thickness 50 µm
- Charge sharing •
 - charge cloud width vs pixel pitch
 - w/o noise: $\sigma \ge p/2$
- Charge encoding
 - # ADC bits

 $\rightarrow \sigma_{sn} \sim 3 \ \mu m$ seems achievable

σ residuals [μm]

3.6

3.5

3.4

3.3

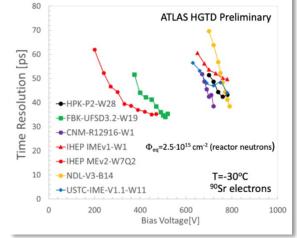
3.2

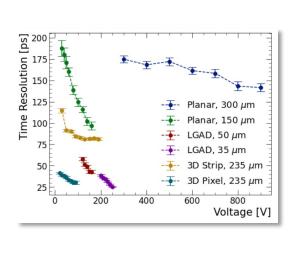
3.1

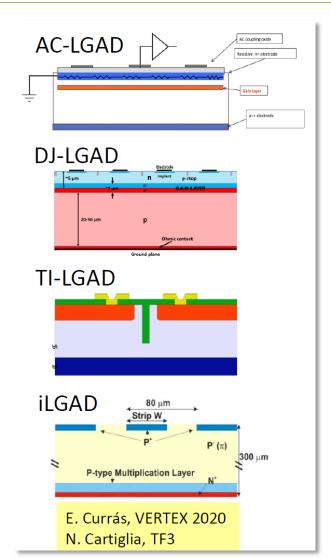
analog

60

Timing Resolution


Many applications

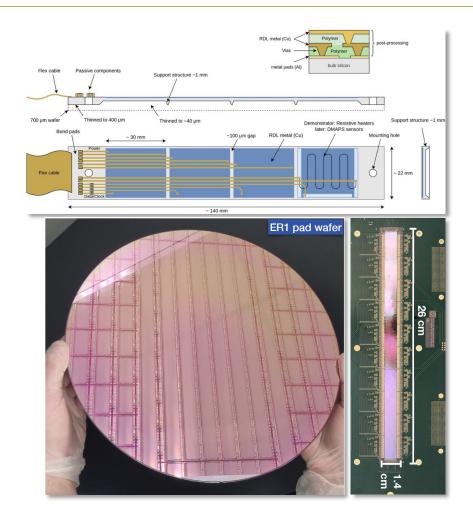

- TOF particle ID
- pile-up suppression
- tracking pattern recognition, shower analysis
- physics of long-lived particles


$\sigma_{total} \sim\!\!35$ ps demonstrated by ATLAS HGTD and others

Directions in R&D

- LGADs, e.g. Resistive Silicon Detectors
 - LGADs with continuous gain layer
 - charge collection through resistive n-layer
- hybrid 3D silicon detectors
- CMOS detectors with gain layer

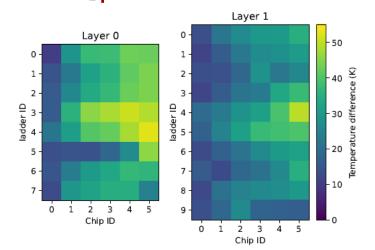
qo

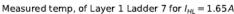

Large Area

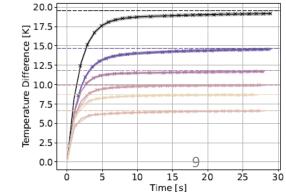
Since there is some confusion in DRD3...

These detectors don't need ultimate performance but high yield and production capacity (at the vendor and when building modules), affordable cost, efficient connections and services

- reduce production cost for "classic size" sensors
 - hybrid passive CMOS sensors (pixel & strip)→ production, interconnection (wafer-to-wafer bonding, etc)
 - monolithic active CMOS strip sensors
- wafer scale sensors
 - stitching (+ bent sensors) \rightarrow ALICE ITS-3
 - post-process RDL (Belle II iVTX Upgrade: 4 sensors per selfsupporting ladder)

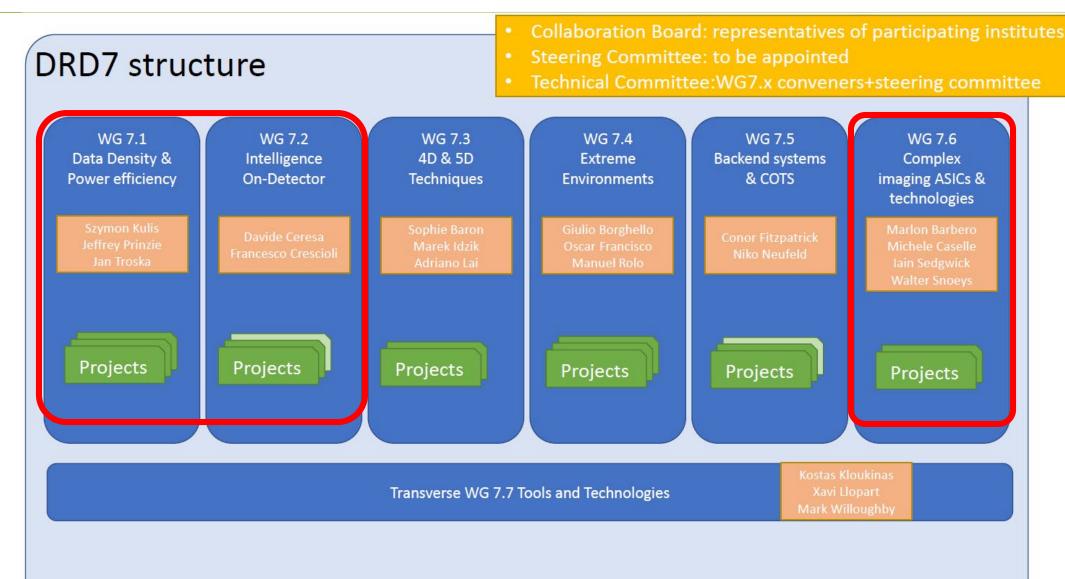



Power Consumption


- some of the prototypes reach ~100 mW/cm²
 - MIMOSIS reports 40 70 mW/cm², ATLASPix3.1 ~ 175 mW/cm²
 - others estimate 10 50 mW/cm²
- max allowable power density not very clear
 - Mu3e (He cooling) reports ΔT ≤ 50 K detector temp wrt gas inlet temp for a heat dissipation of 350 mW/cm²
- subject of DRD7.1
- → limit not clear, but: the lower, the better
- ➔ need engineering support
 - ightarrow thermal simulation crucial

Brief considerations about electronics: power

Name	Sensor	node	Pixel size	Temporal precision [ps]	Power [W/cm²]
ETROC	LGAD	65	1.3 x 1.3 mm ² ~ 40		0.3
ALTIROC	LGAD	130	1.3 x 1.3 mm ²	~ 40	0.4
TDCpic	PiN	130	300 x 300 μm²	~ 120	0.45 (matrix) + 2 (periphery
TIMEPIX4	PIN, 3D	65	55 x 55 μm²	~ 200	0.8
TimeSpot1	3D	28	55 x 55 μm²	~ 30 ps	5-10
FASTPIX	monolithic	180	20 x 20 μm²	~ 130	40
miniCACTUS	monolithic	150	0.5 x 1 mm²	~ 90	0.15 - 0.3
MonPicoAD	monolithic	130 SiGe	25 x 25 μm²	~ 36	40
Monolith	LGAD monolithic	130 SiGe	25 x 25 μm²	~ 25	40


FC@CERN - Germa

			Working Groups							
			WG1 - Monolithic silicon technologies	WG2 - hybrid silicon technologies	WG3 - Radiation hardening	WG4 - Simulation	WG5 - Characterization techniques, facilities	WG6 - Wide bandgap and innovative sensor materials		WG8 - Outreach and dissemination
	WP1 - CMOS sensors	1.1 Spatial resolution	X			X	X			
	Selisors	1.2 Timing resolution	X			X	X			
		1.3 Read-out architectures	X			X	X			
		1.4 Radiation tolerance					X			
		1.5 Low-cost large- area CMOS sensors	X	X		X	X		X	
S	WP2 - Sensors for 4D tracking	2.1 3D sensors	X	X		X	X		X	
age	IOF 4D tracking	2.2 LGAD		X		X	X		X	
ackages	WP3 - Sensors for extreme	3.1 wide band-gap materials								
ing P	fluences	3.2 diamond-based detectors								
Working		3.3 extreme fluence: silicon detectors								
5	WP4 - 3D- integration and interconnection			×					×	
		4.2 3D in-house post- processing for hybridization		×					×	
		4.3 Advanced interconnection techniques		×					×	
		4.4 mechanics and colling	X	X					X	10

Mapping R&D to DRD7

Mapping R&D to Si-D

VP1: Position-Sensitive Mono	Si-D Cons		WP2: Fast Timing
Dingfelder, Weber	lithic Detectors		Garutti, Galatyuk
WP 1.1 CMOS tracking detect Bonn, DESY, TU Dortmund, FH Dortmun Freiburg, Heidelberg, KIT, Siegen, G GSI, HLL-MPG WP 1.2 CMOS detectors for particle id and energy measurem HU Berlin, Heidelberg, KIT, DE	id, Frankfurt, öttingen, entification ent	E	WP 2.1 LGAD sensors DESY, Frankfurt, Göttingen, Hamburg, KIT, Mainz, GSI, HLL-MPG, MPP-MPG WP 2.2 3D sensors Bonn, DESY, Freiburg, MPP-MPG WP 2.3 S sensors with gain layers Freiburg, Heidelberg
WPS	3: System Integrat Dierlamm, Karagounis,		tion
WP 3.1	WP3	ansmission	WP3.3
Power management	Optical data tr		2.5D/3D integration
Aachen, FH Dortmund	Wuppertal, FH D		FH Dortmund, KIT, HLL-MPG
WP3.4	WP3	tector intelligence	WP3.6
Al strips on pCVD diamond carrier	Reusability by on-de		Radiation hardness and simulation
Frankfurt, GSI, Mainz	FH Dortr		Frankurt, GSI, Hamburg, Heidelberg, KIT

23.05.2024

Starting points for discussion

Si-D consortium covers all requirements

- → Use it to consolidate collaboration: Production cost, person power but also: specialization of groups
- → Transport collaboration into DRDs → Start writing proposals

Rich R&D landscape

- \rightarrow Do we want to concentrate efforts now?
- \rightarrow If not, how do we decide, when to converge?
- \rightarrow Which technologies are worth concentrating on?

Process lifetime, industry interests, availability/accessibility of foundries, affordability now and in 20 years

With all the uncertainties, how do we keep experts interested enough until 20XY? Sustainability

- \rightarrow Huge (or no) competition with industry
- \rightarrow Low threshold contributions: MSc theses

Thank you for your attention

Backup

Collider	ILC		CLIC	FCCee			СЕРС		Detector requirements
Bunch separation (ns)	330	/550	0.5	20/99/3000			25/680		moderate time resolution (except CLIC)
Power Pulsing	У	es	yes	no		no no very low power		very low power	
beamstrahlung	hi	gh	high	low		low		moderate radiation hardness	
Detector concept	SiD	ILD	CLICdet	CLD	IDEA	LAr	Baseline	IDEA	
B Field (T)	5	3.5	4	2	2	2	3	2	
Vertex det.	Si Pixel	Si Pixel	Si Pixel	Si Pixel	Si Pixel	Si Pixel	Si Pixel	Si Pixel	
Vertex Rmin (mm)	16	16	31	~12	~12	~12	16	16	
Tracking det.	Si Strip	ТРС	Si Pixel	Si Pixel (+RICH?)	DC/Si Strip	DC/Si Strip	TPC or Si Strip	DC/Si Strip	
Tracker Rmax (m)	1.25	1.8	1.5	2.2	2.0	2.0	1.8	2.1	
Disks	4 + 4	2 + 5	6 + 7	3 + 7	3		2 + 6		

technische universität dortmund

Contributions to timing resolution:

$$\sigma_{\rm total}^2 = \sigma_{\rm det}^2 + \sigma_{\rm elec}^2 + \sigma_{\rm clock}^2$$

 σ_{det} from Landau fluctuations, σ_{clock} from clock jitter •

$$\sigma_{\text{total}}^{2} = \sigma_{\text{det}}^{2} + \sigma_{\text{elec}}^{2} + \sigma_{\text{clock}}^{2}$$

$$\sigma_{\text{det}}^{2} \text{ from Landau fluctuations, } \sigma_{\text{clock}} \text{ from clock jitter}$$

$$\sigma_{\text{elec}}^{2} = \underbrace{\left(\frac{t_{rise}}{S/N}\right)^{2}}_{\text{jitter}} + \underbrace{\left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^{2}}_{\text{timewalk}} + \underbrace{\left(\frac{TDC_{bin}}{\sqrt{12}}\right)^{2}}_{\text{TDC binning}}$$

Brief considerations about electronics: power

Name	Sensor	node	Pixel size	Temporal precision [ps]	Power [W/cm ²]
ETROC	LGAD	65	1.3 x 1.3 mm²	~ 40	0.3
ALTIROC	LGAD	130	1.3 x 1.3 mm²	~ 40	0.4
TDCpic	PiN	130	300 x 300 μm²	~ 120	0.45 (matrix) + 2 (periphery
TIMEPIX4	PIN, 3D	65	55 x 55 μm²	~ 200	0.8
TimeSpot1	3D	28	55 x 55 μm²	~ 30 ps	5-10
FASTPIX	monolithic	180	20 x 20 μm²	~ 130	40
miniCACTUS	monolithic	150	0.5 x 1 mm ²	~ 90	0.15 – 0.3
MonPicoAD	monolithic	130 SiGe	$25 \text{ x} 25 \mu\text{m}^2$	~ 36	40
Monolith	LGAD monolithic	130 SiGe	25 x 25 μm²	~ 25	40

25102122