The AdS/CFT correspondence is one of the most important breakthroughs of the last decades in theoretical physics. A recently proposed way to get insights on various features of this duality is achieved by discretizing the Anti-de Sitter spacetime. Within this program, we consider the Poincare disk (fixed time slice of three-dimensional Anti-de Sitter spacetime) and we discretize it by introducing a regular hyperbolic tiling on it. The features of this discretization are expected to be identified in the quantum theory living on the boundary of the hyperbolic tiling. In this talk, we discuss how a class of boundary Hamiltonians can be naturally obtained in this discrete geometry via an inflation rule that allows constructing the tiling using concentric layers of tiles. The models in this class are aperiodic spin chains, whose sequences of couplings are obtained from the bulk inflation rule. As an example, we consider an aperiodic XXZ spin chain with spin 1/2 degrees of freedom throughout the talk. The properties of this model are studied by using strong disorder renormalization group techniques, which provide a tensor network construction for the ground state of this spin chain. We also show how to
compute the entanglement entropy in this setup in two different ways: a discretization of the Ryu-Takayanagi formula and a generalization of the standard computation for the boundary aperiodic Hamiltonian. For both approaches, a logarithmic growth of the entanglement entropy in the subsystem size is identified. The coefficients, i.e. the effective central charges, depend on the bulk discretization parameters in both cases, albeit in a different way.