Test-beam qualification of the modules for the CMS Phase-2 Outer Tracker

Daniil Rastorguev daniil.rastorguev@desy.de Andreas Nürnberg, Paul Schütze, Lea Stockmeier SiDet R&D 04.06.2024

HELMHOLTZ

Overview of the Phase-2 CMS Outer Tracker Modules

Phase-2 CMS Outer Tracker

Harder, better, faster, stronger

HL-LHC upgrade:

- Instantaneous luminosity up to 7.5 · 10³⁴ cm⁻²s⁻¹
- pile-up up to 200

The all-new Outer Tracker, improved in every aspect:

- Higher granularity
- Higher radiation hardness
- Higher data rate
- Contribution to the fast hardware (L1) trigger by track p_{τ} discrimination

Built of **two types** of **double sensor** layer modules:

On-module p_{τ} **discrimination**

How the modules contribute to the L1 trigger

Modules are able to spot high p_{τ} tracks (> 2 GeV) = candidates for interesting events:

- high $p_{\tau} \rightarrow \sim$ perpendicular traverse
- low $p_{\tau} \rightarrow$ traverse at an angle

A **stub** is a special data instance, produced by the module as a response to a high p_{τ} track \rightarrow contains position and bend angle

Modules are designed to produce and send out **stubs** at the BX rate (40 MHz) and with low latency \rightarrow to be used in the fast hardware (Level-1) trigger

Stub pipeline, run on the module onboard ASICs:

Test-beam campaign

>buy wireless device >look inside >wires

3x 2S in the telescope

Test beam campaign

DESY-II, Feb 5th – Feb 18th 2024

DSY_101 PS kick-off, 2.6 mm, 5G, DESY

- full characterization
- validation of kick-off components

IPG_103 PS kick-off, 2.6 mm, 10G, Perugia

• tests of 10 Gbps readout

BRN_009

PS prototype, 1.6 mm, irrad. PS-s, 10G, US East

• tests of an irradiated PS-s sensor

KIT_101, KIT_102, KIT_104 3x. 2S kick-off, Karlsruhe

- full characterization
- validation of kick-off components
- simultaneous readout of 3 modules

PS module on a carrier plate inside of a test box

Observable quantities

Definitions of detector performance FOMs

Reconstruction performed with Corryvreckan with GBL tracking

Angular calibration of the setup

by cluster size vs angle dependency

Cluster size vs. incidence angle

is a precise way of zeroing of the rotation stage:

- independent of tracking/reconstruction
- strongly dependent on the angle

size(
$$\alpha$$
) = $s_0 + k \cdot \langle \tan | x - \alpha_0 | * \exp -\frac{y^2}{\sigma^2} \rangle(\alpha)$

 \rightarrow angular offset α_0 extracted from the fit and applied to all angle readings from the rotational stage

Results

DSY_101 kick-off (1/4)

sensor efficiency and working points

For non-irradiated sensors, the working point was determined as follows:

- Thr MPA = 110 DAC units ≈ 3 ke⁻
- Thr SSA = 30 DAC units ≈ 7.5 ke⁻
- Bias = 350 V

This yields efficiencies:

- ε(PS-p) = **98.7±0.1%**
- ε(PS-s) = **99.7±0.1%**

NB: results shown are work in progress

- outliers in plots
 - \rightarrow data points with unphysical monitoring values and too little statistics
- not reproducible with EUTelescope

 \rightarrow most likely is a Corryvreckan analysis artifact, under investigation

DSY_101 kick-off (2/4)

Spatial resolution vs incidence angle

Coordinate resolution quantified by fitting a **Gaussian** to the distribution of *local* residuals

 Telescope resolution of ~8.6 µm estimated by [1] is subtracted

For both sensors,

- Resolution of ~35 µm for perpendicular incidence
- This improves with incidence angle, overcoming binary limit due to increasing cluster size

DSY_101 kick-off (3/4)

stub discrimination

 $\mathcal{E}(\text{Stub}) = \mathcal{E}(\text{PS-p}) \cdot \mathcal{E}(\text{PS-s}) \cdot \mathcal{E}(\text{Acceptance})$

Discrimination window width and offset are adjusted to ensure equal p_{τ} cut for different module locations in the Tracker

DSY 101 kick-off (4/4)

on-module angle measurement via stub bend codes

For each stub, a **bend code** is stored

- contains information on track angle
- to be used in Level-1 trigger ٠

NB: error bars represent only encoding/binning errors

On-module track angle, window=3.0, offset=2.0

12 work in progress

10

8

10

10

11

12

BRN_009 irradiated PS-s (1/2)

experimental environment

BRN_009 module

- PS-s irradiated,
 1.1×10¹⁵ neutrons/cm²
- no wire-bonds encapsulation

Cooling system:

- Copper thermoblock for 2S, SiOil ~ -40° C
- Dry (warm) N₂ supply
- Module on a solid Al carrier plate, no thermal interface material underneath

Temperature maintained on module: -20°C (est.)

- \rightarrow don't exceed 600 V bias
- \rightarrow reduced tracking precision due to scattering

Cooling system (inside)

Cooling system (outside)

BRN_009 irradiated PS-s (2/2)

efficiency study

Working point:

- Threshold SSA = 23 DAC units ≈ 6 ke⁻
- Bias = 600 V

 $\rightarrow \epsilon(\text{PS-s}) = 99.5 \pm 0.1\%$

Inclined incidence:

slightly higher efficiency for lower bias

Rationale:

under-depletion \Rightarrow thinner effective layer

⇒ increasing angle yields more charge *per channel*

IPG_103 at 10 Gbps

stub readout works now!

Trivia:

- Depending on expected hit rates, modules have either
 5 Gbps or 10 Gbps readout
- 10G was not fully operational

With all the issues fixed,

10G readout has proven to work under test-beam conditions!

Proper stub turn-on curve with stub efficiency at flat top of **98.2±0.1%**

"HEY WHERE DID OUR TENT GO ?!?"

Suspiciously tent shaped bear:

2S modules, multiple!

A sneak peek on results

Measurement programme:

- Threshold study (efficiency, noise occupancy)
- Stub turn-on study (various windows and offsets)
- Simultaneous readout of 3 modules
- Sensor-to-sensor alignment study, track-based

Summary Things are looking good!

Successful beam time at DESY-II Completed a dense measurement program on 6 modules:

- Extensive characterization of 5G PS kick-off module
- Stub readout on PS 10G kick-off module
- Efficiency measurements on irradiated PS-s sensor
- Synchronous readout of 3x. 2S kick-off modules

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

That's it! Thank you for attention!

