Searches for new physics in Monojet and Dijet final states with ATLAS

Sahill Poddar and Thorsten Dietzsch Kirchhoff Institut für Physik Universität Heidelberg 5th Annual Workshop of the Helmholtz Alliance 7-9 Dec 2012, Bonn

Outline

* Part 1: Monojet

- Introduction
- Analysis overview
- Background estimation
- Results and Limits
- * Part 2: Dijets
 - Introduction
 - Analysis overview
 - Resonances
 - Model (in)dependent Limits

* Conclusion

Introduction : Monojet

* Monojet + E_T^{miss} is a promising signature for several BSM scenarios

* Extra dimensions:

- provides insight into the hierarchy problem
- compactified on a small radius R (eg. ADD,UXD)

* ADD paradigm [N.Arkani-Hamed,S.Dimopoulos, and G.R Dvali, Phys.Lett. B429,(1998)263]

- Fundamental scale can be (much) lower than the Planck scale

* Planck mass(M_{pl}) in (3+1)D related to the fundamental mass M_D in 4+d:

 $M_{\text{pl}}^2 \sim M_D^{2+d} R^d$

★ Signature: Graviton (G_N) - E^{miss} + jet production Signal sample : PYTHIA ExoGraviton with CTEQ6.6 PDF

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Part 1: Monojet

" a typical Monojet event recorded by ATLAS"

★ leading jet:
 p_T = 602 GeV
 η = -1; Φ = 2.6

 $* E_T^{miss} = 523 \text{ GeV}$

* no additional jet with $p_T > 30 \text{ GeV}$

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet : Event Selection

* Lowest threshold unprescaled E_T^{miss} trigger

- * 1 primary vertex with more than 2 tracks
- * Cleaning cut: reject detector noise
- * Lepton veto (electron: $p_T > 20$ GeV, muon: $p_T > 10$ GeV)
- * 3 sets of cuts defining 3 kinematic signal regions

Region	ETmiss	1 st jet	2 nd jet	$\Delta \Phi(2^{nd} jet, E_T^{miss})$
low p _T	> 120 GeV	> 120 GeV	< 30 GeV	
high p _T	> 220 GeV	> 250 GeV	< 60 GeV	> 0.5
very high p _T	> 300 GeV	> 350 GeV	< 60 GeV	> 0.5

1fb⁻¹ (±3.7%) of 2011 data is analysed

Monojet : EW background estimation - I

* Z/W+ jets constitute the dominant contribution to the background.

1. W->|v+jet -> misidentification of leptons.

* Estimated using ALPGEN MC (NNLO cross sections) and rescaled using data control samples

Monojet : EW background estimation - II

Determined by inverting the lepton veto to define a control region and scale the simulation in the CR to data.

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet : Results

	low pt	high p⊤	very high pt
Total background ± (stat) ± (syst.)	15100 ± 170 ± 680	1010 ± 37 ± 65	193 ± 15 ± 20
Events in Data (Ifb ⁻¹)	15740	965	167

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet : ADD Exclusion limits

* high p_T region used to set limits * Limits set on $\sigma \ge A$ (acceptance) * Acceptance includes all reconstruction, trigger and selection cuts * Interpreted in terms of M_D

95% CL limits on M_D for the ADD model				
High p⊤ selection				
no. of extra dim	expected [TeV]	observed [TeV]		
2	2.98	3.16		
3	2.44	2.56		
4	2.18	2.27		
5	2.03	2.10		
6	1.92	1.99		

Introduction : Dijets

BSM scenarios with a dijet final state:

1. excited quarks -

[U. Baur, I. Hinchliffe and D. Zeppenfeld, Int. J. Mod. Phys. A2,1285 (1987)] Signal sample: PYTHIA MC generator with MRST2007LO* PDF

2. Axigluon -

existence of a massive, color octet gauge boson : Axigluon->qq [P. Frampton and S. Glashow, Phys. Lett. B 190,157 (1987) J. Bagger, C.Schmidt and S.King, Phys. Rev. D 37, 1188 (1988)] Signal sample: CalcHEP MC generator with MRST2007LO* PDF

10

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Part 2 : Dijets

" a typical high mass dijet event recorded by ATLAS"

11

★ leading jet:
p_T = 1.3 TeV
η = -0.2; Φ = 2.8

* sub-leading jet: $p_T = 1.2 \text{ TeV}$ $\eta = 0.0; \phi = -0.5$

* m_{jj} = 2.6 TeV

Dijets : Event Selection

* Lowest threshold unprescaled jet trigger
* 1 primary vertex with more than 4 tracks
* cleaning cut: reject detector noise
* Jet kinematics: p_T (jet₁ and jet₂) > 30 GeV, |η| < 2.8 |y₁₂| < 1.2 (rapidity in parton CM frame)
* No treatment for leptons -> EW backgrounds negligible

1fb⁻¹ (±3.7%) of 2011 data is analysed

Dijets : Resonances

★ Data is fit to a function which accurately models the QCD dijet mass spectrum [T.Aaltonen *et al.* (CDF collaboration),Phys Rev.D 79, 112002(2009)]

* Comparing: χ^2 from data and pseudo experiments gives a p-value = 0.96

★ Good agreement between data and functional form

* To increase sensitivity BumpHunter algorithm is used [T.Aaltonen *et al.* (CDF collaboration), Phys Rev.D **79**, 011101(2009)]

$$f(x) = p_1(1-x)p^2x^{p^3+p^4lnx}$$
where $x \equiv m_{jj}/\sqrt{s}$
 p_i are fit parameters

Dijets : Model Dependent Limit Setting

The limit setting incorporates:

★ Effects of systematic uncertainties (luminosity, JES)

* Effect of JER which is negligible

* Reweighting of simulation to account for *in-time* and *out-of-time* "pile-up"

★ New physics model is a benchmark
 i.e. no theoretical uncertainty
 (fixed MC tune and PDF set)

Model	95% CL Limits (TeV)		
	Expected	Observed	
Excited Quark q* Axigluon	2.81 3.07	2.99 3.32	

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

 $\ensuremath{\bigstar}$ Results can be utilized to set model independent limits

★ Hypothetical signal: Assumptions,

1. Gaussian distributed with mean (m_G) in [0.9,4.0] TeV.

2. Standard deviation (σ_G) from 5% to 15% of mean

Systematics: same as in the model dependent limits

Summary

* ATLAS searches for new physics with Monojet or Dijet final states is presented with 1 fb^{-1} of 2011 data.

* No hints of new physics found yet...

* Limits for models with Extra Dimensions, Excited Quarks or Axigluons.

* Model independent limits

* Apart from dijet resonance search efforts also ongoing in dijet angular distribution analysis. [G.Aad *et.al*, The ATLAS Collaboration, New Journal of Physics 13 (2011) 053044]

* The search is still on about 5fb^{-1} of data collected in 2011.

BACKUP MATERIAL

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet : Object definition

<u>Jets</u>:

* reconstructed using AntiK_T (R=0.4)
* input are topological clusters
* calibrated to hadronic scale
* p_T > 30 GeV
* |**n**| < 4.5

<u>Muons</u>:

* p_T > 10 GeV
 * |η| < 2.4
 * isolation criteria

ET^{miss}:

* Calorimeter based

* topological clusters within $|\eta| < 4.5$

<u>Electrons</u>: * p_T > 20 GeV * |**η**| < 2.47

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet: Trigger selection

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet: QCD background estimation

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet: EW background estimation - electron

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet : QCD background estimation

22

Multi or dijet events can constitute QCD background due to mismeasurement of next-to-leading jet -> fake E_T^{miss}

Invert the second jet veto to obtain a dijet enriched sample and extrapolate the shape of next-to-leading jet in lower p_T bins using a linear fit.

Monojet: Low p_T distributions

Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet: High p_T distributions

Background Predictions \pm (stat.) \pm (syst.)			
	LowPt Selection	HighPt Selection	veryHighPt selection
$Z (\rightarrow v \bar{v})$ +jets	$7700 \pm 90 \pm 400$	$610 \pm 27 \pm 47$	$124 \pm 12 \pm 15$
$W(\rightarrow \tau v)$ +jets	$3300 \pm 90 \pm 220$	$180 \pm 16 \pm 22$	$36 \pm 7 \pm 8$
$W(\rightarrow ev)$ +jets	$1370 \pm 60 \pm 90$	$68\pm10\pm8$	8±1±2
$W(\rightarrow \mu v)$ +jets	$1890 \pm 70 \pm 100$	$113 \pm 14 \pm 9$	$18 \pm 4 \pm 2$
Multi-jets	$360 \pm 20 \pm 290$	$30 \pm 6 \pm 11$	3±2±2
$Z/\gamma^*(\rightarrow \tau^+\tau^-)$ +jets	$59 \pm 3 \pm 4$	$2.0 \pm 0.6 \pm 0.2$	-
$Z/\gamma^*(\rightarrow \mu^+\mu^-)$ +jets	$45 \pm 3 \pm 2$	$2.0 \pm 0.6 \pm 0.1$	-
tī	$17 \pm 1 \pm 3$	$1.7 \!\pm\! 0.3 \!\pm\! 0.3$	-
γ+jet	-	-	-
$Z/\gamma^*(\rightarrow e^+e^-)$ +jets	-	-	-
Non-collision Background	$370 \pm 40 \pm 170$	$8.0 \pm 3.3 \pm 4.1$	$4.0 \pm 3.2 \pm 2.1$
Total Background	$15100 \pm 170 \pm 680$	$1010 \pm 37 \pm 65$	$193 \pm 15 \pm 20$
Events in Data (1.00 fb ⁻¹)	15740	965	167

Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet: very high p_T distributions

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Monojet: ADD limits

26

95% CL limits on M_D for the ADD model						
	LowPt selection		HighPt selection		veryHighPt selection	
n	expected [TeV]	observed [TeV]	expected [TeV]	observed [TeV]	expected [TeV]	observed [TeV]
2	2.38	2.21	2.98	3.16	3.04	3.39
3	1.94	1.82	2.44	2.56	2.48	2.71
4	1.73	1.64	2.18	2.27	2.25	2.42
5	1.63	1.55	2.03	2.10	2.12	2.26
6	1.55	1.47	1.92	1.99	1.98	2.12

	95% CL limits on M_D for the ADD model ($\hat{s} < M_D^2$)				
	LowPt selection	HighPt selection	veryHighPt selection		
n	observed [TeV]	observed [TeV]	observed [TeV]		
2	2.20	3.16	3.39		
3	1.76	2.50	2.55		
4	1.54	2.15	2.26		
5	1.37	1.89	1.90		
6	1.24	1.68	1.58		

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Monojet: Systematics

	lowPt (%)	HighPt (%)
PDFs	6.3	6.3
ISR/FSR	13	13
Q ² scale	11.2	11.2
JES	5.3	5.6
JER	2.7	1.1
Pile-Up	2.6	2.0
Luminosity	3.7	3.7
MC statistics	5.2	5.2
Total sys	19.7	19.8

Introduction : Dijets

BSM scenarios with a dijet final state:

excited quarks - qg->q*->qg [1]
 Assumptions: spin 1/2, quark like SM couplings
 Compositeness scale (Λ) set to q* mass
 [U. Baur, I. Hinchliffe and D. Zeppenfeld, Int. J. Mod. Phys. A2,1285 (1987)]
 Signal sample: PYTHIA MC generator with MRST2007LO* PDF

2. Axigluon - Extend the standard color gauge group: SU(3)_L x SU(3)_R => SU(3)_C
Existence of a massive, color octet gauge boson : Axigluon->qq
Strong interaction coupling strength same as QCD
[P. Frampton and S. Glashow, Phys. Lett. B 190,157 (1987)
J. Bagger, C.Schmidt and S.King, Phys. Rev. D 37, 1188 (1988)]
Signal sample: CalcHEP MC generator with MRST2007LO* PDF

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn

Sahill Poddar Kirchhoff Institut für Physik Universität Heidelberg

Dijet : Scalar Octet (S8) limit setting

5th Annual Workshop of the Helmholtz Alliance 7-9th Dec, Bonn