

Working group report: Neutrino Masses and Lepton Flavor Violation @LHC

Werner Porod

Universität Würzburg

- Workshop at DESY 4-6 May 2011 (combined with LHC-D SUSY/BSM working group)
- topics in the last year
 - (Flavour-) Symmetries (Bonn, Dortmund)
 - R-parity violation (Bonn, Dortmund, Würzburg)
 - Seesaw models and SUSY (Würzburg), see also talk by M. Krauss
 - Models with extended gauge sector (Bonn, Würzburg), see also talks by F. Staub and A. Vicente
 - searches by ATLAS and CMS in the leptonic sector (Aachen, Bonn, Dortmund, Hamburg, Würzburg)
- Future directions

- general *R*-parity violation: e.g. allow only for *L*-violating couplings and reduce their number
- I S₃ model for flavour symmetries \rightarrow interesting Higgs phenomenology

- general *R*-parity violation: e.g. allow only for *L*-violating couplings and reduce their number
- S_3 model for flavour symmetries \rightarrow interesting Higgs phenomenology

Philipp Leser | DESY, 2011-05-05

Julius-Maximilians-

RZBURG

UNIVERSITÄT

h_{α} is special, again

Flavour symmetries II

The 3rd scalar ha only couples off-diagonally, always with 3rd generation:

▶
$$h_a \rightarrow e\tau(db, ut)$$
 $h_a \rightarrow \mu\tau(sb, ct)$

FCNC couplings are numerically small and fixed by fermion masses

$$Y_{h_{a}} = \begin{pmatrix} 0 & 0 & Y_{e_{L}\tau_{R}}^{a} \\ 0 & 0 & Y_{\mu_{L}\tau_{R}}^{a} \\ Y_{\tau_{L}e_{R}}^{a} & Y_{\tau_{L}\mu_{R}}^{a} & 0 \end{pmatrix}, \quad Y_{h_{b}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{b} & Y_{e_{L}\mu_{R}}^{b} & 0 \\ Y_{\mu_{L}e_{R}}^{b} & Y_{\mu_{L}\mu_{R}}^{b} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{b} \end{pmatrix}, \quad Y_{h_{c}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{c} & Y_{e_{L}\mu_{R}}^{c} & 0 \\ Y_{\mu_{L}e_{R}}^{c} & Y_{e_{L}\mu_{R}}^{c} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{c} \end{pmatrix}$$

Philipp Leser | DESY, 2011-05-05

Flavour symmetries III

Summary

Julius-Maximilians-

UNIVERSITÄT

RZBURG

- Scalar sector is an interesting avenue to test flavor symmetries
- ▶ S₃ can **explain some mixing angles**, comes with an **enlarged scalar sector**.
- **Two SM-Higgs-like scalars** h_b and h_c . Decay dominantly into third scalar $h_a h_a$
- Scalar *h*^a has **limited gauge interactions**
- h_a has only off-diagonal Yukawa couplings, involving a lepton or quark from the third generation
- Scalars might already be buried in existing LEP or Tevatron data
- Currently expanding the analysis to include all scalar degrees of freedoms

Superpotential of the SSM

R-Parity violating operators in superpotential:

• $W \supset \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_2}_{\text{Lepton Number Violating}} + \underbrace{\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k}_{\text{Baryon Number Violating}}$

However: LNV + BNV lead to proton decay!

 \Rightarrow We will use a model which prohibits $\overline{U}\overline{D}\overline{D}$ (Baryon Triality)

[Dreiner, Luhn, Thormeier, '06]

 $\tilde{e}_R/\tilde{\mu}_R$ LSP in RPV-CMSSM

LHC-D SUSY/BSM 2011 3 / 26

λ dependence of the \tilde{e}_R mass

$\Rightarrow \tilde{e}_R/\tilde{\mu}_R \text{ LSP with } \lambda \gtrsim \mathcal{O}(10^{-2}) \text{ at } M_{GUT}.$

T. Stefaniak (Bonn University)

 $\tilde{e}_R/\tilde{\mu}_R$ LSP in RPV-CMSSM

LHC-D SUSY/BSM 2011 8 / 26

Signatures at hadron colliders

Example cascade decay with $\lambda_{231} \neq 0$

- Squark and gluino production dominant (at LHC)
- Mostly cascade decays into \tilde{e}_R -LSP
- \tilde{e}_R -LSP decays via λ_{231} :

•
$$\tilde{e}_R \to \mu \nu_{\tau}, \, \tau \nu_{\mu}$$

• Some other RPV decays via λ_{231} :

$$\widetilde{\nu}_{\tau} \to e^{-} \mu^{+} \widetilde{\tau}_{1} \to e \nu_{\mu}$$

• Typical signatures:

- Similar signatures for other λ_{ijk} -couplings
- \Rightarrow Multi-leptonic events (plus jets)!

Г. Stefaniak ((Bonn L	Jniversit
----------------	---------	-----------

 $\tilde{e}_R/\tilde{\mu}_R$ LSP in RPV-CMSSM

LHC-D SUSY/BSM 2011 11 / 26

Signal efficiency and discovery reach at LHC 7 TeV

- Signal efficiency decreases for small $\Delta M = M_{\tilde{\chi}_1^0} M_{\tilde{e}_R}$.
- Signal is observable $\Leftrightarrow S \ge max \left[5\sqrt{B}, 5, 0.5B \right]$
- Scenarios with $M_{\tilde{q}} \leq 1.2$ TeV, $M_{\tilde{e}_R} \leq 230$ GeV can be tested with 1 fb⁻¹.
- Analysis is basically flavor independent \Rightarrow same prospects for $\tilde{\mu}_R$ LSP.

```
T. Stefaniak (Bonn University)
```

 $\tilde{e}_R/\tilde{\mu}_R$ LSP in RPV-CMSSM

LHC-D SUSY/BSM 2011

21 / 26

Neutrino physics in models with broken R-parity Generating neutrino masses in ϵ_i -model

Generation of a Majorana mass term for ν_i via the *L*-violating terms

In the basis

$$(\psi^{0})^{T} = (\tilde{B}, \tilde{W}_{3}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}, \nu_{1}, \nu_{2}, \nu_{3})$$

one can write $\mathcal{L}_{\text{neutral}}^{\text{mass}} = -\frac{1}{2} \left(\psi^0 \right)^T \mathcal{M}_n \psi^0 + h.c.$ with

$$\mathcal{M}_n = \begin{pmatrix} M_n & m \\ m^T & 0 \end{pmatrix}$$

- M_n mixes the 4 heavy states
- *m* mixes the heavy states with the neutrinos

This leads to an effective neutrino mass matrix $m_{\rm eff}$, which is at NLO given by

$$(m_{\text{eff}})_{ij} = -\left(m^T M_n^{-1} m\right)_{ij} = a\Lambda_i\Lambda_j + b\left(\Lambda_i\epsilon_j + \epsilon_i\Lambda_j\right) + c\epsilon_i\epsilon_j$$

with $\Lambda_i = \mu v_i + v_d\epsilon_i$ and $\langle \tilde{\nu}_i \rangle = \frac{1}{\sqrt{2}}v_i$

Stefan Liebler

5/14

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

LSP properties in models with broken *R*-parity Correlation to neutrino mixing angles

Where does the correlation to neutrino physics come from?

Consider the lightest neutralino $\tilde{\chi}_1^0 = \tilde{W}_3^0$ as LSP in the $\mu\nu$ SSM. Two-body decay: At tree level the left-handed W- $\tilde{\chi}_1^0$ - l_i -coupling reads:

$$\begin{aligned} \mathcal{L} &= \overline{l_i^-} \gamma^\mu \left(O_{Li} P_L + O_{Ri} P_R \right) \tilde{\chi}_1^0 W_\mu^- + h.c. \\ O_{Li} &\approx \frac{g}{\sqrt{2}} \left[\frac{g\Lambda_i}{\det_+} N_{12} - \left(\frac{\epsilon_i}{\mu} + \frac{g^2 v_u \Lambda_i}{2\mu \det_+} \right) N_{13} - \sum_{j=1}^5 N_{1j} \xi_{ij} \right] & \xrightarrow{\tilde{\chi}_1^0} \\ & \longrightarrow \frac{Br \left(\tilde{\chi}_1^0 \to W^- \mu^+ \right)}{Br \left(\tilde{\chi}_1^0 \to W^- \tau^+ \right)} \propto \left| \frac{O_{L2}}{O_{L3}} \right|^2 = \left(\frac{\Lambda_2}{\Lambda_3} \right)^2 \approx \tan^2 \theta_{atm} \end{aligned}$$

However: We have to use a NLO neutralino mass matrix.

Problem: The branching ratios of $\tilde{\chi}_1^0 \to W^{\pm} l^{\mp}$ do not always show the treelevel prediction after the incomplete one-loop correction:

Stefan Liebler

LSP properties in models with broken $R\mbox{-parity}$ $\tilde{\chi}^0_1 \to l^+ W^- \mbox{ on NLO}$

Correlations between neutrino mixing angles - $\tilde{\chi}_1^0 \rightarrow l^+ W^-$

Finally we can compare the ratios of decay widths $\tilde{\chi}_1^0 \rightarrow l^+ W^-$ with the neutrino mixing angles:

Bino $\tilde{\chi}_1^0 = \tilde{B}$

Higgsino with Singlino fraction $\tilde{\chi}_1^0 = \tilde{H}$

 \implies The full NLO corrections show the behaviour predicted on tree-level!

Stefan Liebler

Models

$$\begin{split} m_{\nu} &= -\frac{v_{u}^{2}}{2} Y_{\nu}^{T} M_{R}^{-1} Y_{\nu} \qquad m_{\nu} = \frac{v_{u}^{2}}{2} \frac{\lambda_{2}}{M_{T}} Y_{T} \qquad m_{\nu} = -v_{u}^{2} \frac{4}{10} Y_{W}^{T} M_{W}^{-1} Y_{W} \\ (M_{R} \simeq 10^{15} \text{ GeV}) \qquad (\frac{M_{T}}{\lambda_{2}} \simeq 10^{15} \text{ GeV}) \qquad (M_{W} \simeq 8 \times 10^{14} \text{ GeV}) \\ (\text{for Yukawas of } \mathcal{O}(1) \text{ and } m_{\nu} \sim \sqrt{\Delta m_{A}^{2}} \sim 0.05 \text{ eV}) \end{split}$$

Laslo Reichert, Universidad Valencia - C.S.I.C

Observables

Dependence of slepton and squark masses on m_{SS}

- \rightarrow Seesaw II and III pushes SUSY masses to smaller values!
- \rightarrow MSP-1 (70, 400, 10, -300), MSP-2 (220, 700, 30, 0), MSP-3 (120, 720, 10, 0)

Laslo Reichert, Universidad Valencia - C.S.I.C

11/27

Observables

Dependence of LHC Observables on m_{SS}

Laslo Reichert, Universidad Valencia - C.S.I.C

13/27

Results

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC + ILC (Seesaw III)

Seesaw III (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

- ightarrow errors depend strongly on m_{SS}
- \rightarrow distinguishable from mSUGRA for:

 $m_{SS} \lesssim 6-7 imes 10^{15}$ GeV for 1σ c.f.

ightarrow change in scale m_{SS}

Laslo Reichert, Universidad Valencia - C.S.I.C

18/27

Results

Errors of $m_0, M_{1/2}$ and m_{SS} against m_{SS} for LHC obs. only (Seesaw III)

Seesaw III ($m_0: 120, M_{1/2}: 720, \tan\beta: 10, A_0: 0$)

 \rightarrow distinguishable from mSUGRA for: $m_{SS} \lesssim 5 \times 10^{14} \ {\rm GeV} \ {\rm for} \ 1\sigma \ {\rm c.f.}$

 \rightarrow All errors much larger than for LHC+ILC

20 / 27

Laslo Reichert, Universidad Valencia - C.S.I.C

Ongoing projects

Julius-Maximilians-

UNIVERSITÄT

WURZBURG

- Detailed investigation of pseudoscalar Higgs bosons and charged Higgs bosons in S_3 models (Dortmund)
- **Solutions** Detween $0\nu\beta\beta$ and LHC signals (Dortmund)
- Specific R-parity signals (Dortmund, Würzburg)
- SUSY models with additional $U(1)_{B-L}$: implications for LHC (Bonn, Würzburg)
- Experimental studies (Bonn, Würzburg)
 - search for R-parity violating signals at ATLAS
 - displaced vertices in case of R-parity violating
 - LSP mass reconstruction in case of R-parity violating
 - searches for lepto-quarks

More infos on (will be updated soon):

https://twiki.cern.ch/twiki/bin/view/Sandbox/NeutrinoMassesLFVatLHC